我要投稿 投诉建议

小学六年级数学下册课件

时间:2022-10-21 12:09:49 六年级 我要投稿

人教版小学六年级数学下册课件(通用12篇)

  在空间与图形,册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生对圆柱、圆锥特点和知识的与学习,圆柱表面积,圆柱、圆锥体积计算的方法,空间观念的发展。下面是小编整理人教版小学六年级数学下册课件,欢迎大家阅读参考!

人教版小学六年级数学下册课件(通用12篇)

  小学六年级数学下册课件 篇1

  一、教学内容

  册教材包括下面内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和温习等。

  教学:百分数的利用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和性质、正比例和反比例、扇形统计图、转化的解题策略总温习的四个板块的系列内容。

  教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判定、用方向和间隔位置、众数和中位数均匀数、解题策略的灵活应用。

  二、教学要求

  1.负数的意义,会用负数表示平常生活中的题目。

  2.理解比例的意义和性质,会解比例,理解正比例和反比例的意义,能够判定两种量成正比例或反比例,会用比例知识解决简单的题目;能给出的有正比例关系的数据在有坐标系的方格纸上画图,并能量的值估计另量的值。

  3.会看比例尺,能方格纸等按的比例将简单图形放大或缩小。

  4.熟悉圆柱、圆锥的特点,会计算圆柱的表面积和圆柱、圆锥的体积。

  5.能从统计图表提取统计信息,解释统计结果,并能的判定或简单的猜测;体会数据产生误导。

  6.经历从生活中题目、题目、解决题目的进程,体会数学在平常生活中的作用,综合应用数学知识解决题目的能力。

  7.经历对抽屉原理的探究进程,抽屉原理,会用抽屉原理解决简单的题目,发展分析、推理的能力。

  8.系统的整理和温习,对小学阶段所学的数学知识的理解和,的、灵活的计算能力,发展思惟能力和空间观念,综合应用所学数学知识解决题目的能力。

  9.体会学习数学的乐趣,学习数学的爱好,学好数学的信心。

  10.养成作业、书写整洁的习惯。

  三、教材分析

  在数与代数,册教材安排了负数和比例两个单元。生活实例使学生熟悉负数,负数在生活中的利用。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决题目。

  在空间与图形,册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生对圆柱、圆锥特点和知识的与学习,圆柱表面积,圆柱、圆锥体积计算的方法,空间观念的发展。

  在统计,本册教材安排了数据产生误导的内容。简单事例,使学生熟悉到统计图表虽便于判定或猜测,但如不分析也有不的信息错误判定或猜测,对统计数据、客观、的分析的性。

  在用数学解决题目,教材一圆柱与圆锥、比例、统计等知识的学习,教学用所学的知识解决生活中的简单题目;另外一安排了数学广角的教学内容,学生观察、猜想、实验、推理等活动,经历探究抽屉原理的进程,体会如何对简单的题目模型化,从而学习用抽屉原理解决,感受数学的魅力,发展学生解决题目的能力。

  本册教材学生所学习的数学知识和生活经验,安排了多个数学综合利用的实践活动,让学生合作的探究活动或有现实背景的活动,应用所学知识解决题目,体会的乐趣和数学的利用,感受用数学的愉悦,培养学生的数学利意图识和实践能力。

  整理和温习单元是在小学数学的教学内容以后,学生对所学内容一次系统的、的回顾与整理,这是小学数学教学的环节。整理和温习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生头脑中的数学认知结构,为初中的数学学习打下的基础;学生综合应用所学知识分析题目和解决题目的能力。

  四、学情份析

  本班共有学生29人,大学生对数学有上进心;有些学生的学习还需端正;有学生自觉性,上课留意力不;作业等;还有学生(胡志强、裴玉琴、陈建宏)基础知识,学习数学有。在新的学期里,在端正学生学习的,应培养的学习数学的能力,的学习,使学生在中人人,各抒己见,相互启发, 找出解决题目的方法,体验学习数学的快乐。

  五、教学方法:

  1、创设愉悦的教学情境,激起学生学习的爱好。提倡学法的多样性,关注学生的个人体验。

  2、在集体备课基础上,还应同年级老师交换听课,反思,真正领会教学设计意图,驾御课堂的能力。教师应转变观念,采用鼓励性、自主性、性教学策略,以题目为线索,恰当应用教材、媒体、现实材料、难点,变多讲多练,为精讲精练,真正师生互动、生生互动,从而调动学生学习,教与学的效益。

  3、不增减课程和课时,不要求,不购买温习资料,不留机械、重复、惩罚性作业和作业总量不超过规定,课堂练习的多样化,一题多解,从不同角度解决题目。

  4、基础知识的教学,使学生好基础知识。本学期要以新的教学理念,为学生的延续发展的教学资源和空间。要教材的上风,在教学进程中,密切数学与生活的,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中个性化学习需求,从而基础知识技能,培养学生创新意识和实践能力的目的。

  5、在教学中留意采用开放式教学,培养学生情境选择方法解决题目的意识。如一题多解、一题多变、一题多问、一题多编等途径,拓宽学生的知识面,沟通知识之间的内在,培养学生的应变能力。

  6、练习的安排,要由浅入深,体现层次性。同的学生,要有不同的要求和练习,对优生、学困生都要体现。数学实践活动,让学生熟悉数学知识与生活的关系,使学生感到生活中时时处处有数学,用数学的意义来引发和培养学生酷爱数学的情感。

  7、对家庭教育的。家长遵守教育规律和学生身心发展的规律、科学育人。学生对待与失败,英勇克服学习和生活中的,做学习和生活的强者。

  学习:

  ①预习教材,知识,是途径理解的,还有哪些疑问。

  ②查阅资料找出解决题目的方法。

  ③ 教师课堂教学的者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操纵能力和发散思惟能力。

  ④的学习,使学生在中人人,各抒己见,相互启发, 找出解决题目的方法,体验学习数学的快乐。

  六、课时安排

  六年级下学期数学教学安排了60课时的教学内容,各教学内容教学课时大致安排以下,教师教学时可以本班情况灵活:

  一、负数(3课时)

  二、圆柱与圆锥(9课时)

  1.圆柱………………………………………………………6课时左右

  2.圆锥………………………………………………………2课时左右

  整理和温习……………………………………………………1课时

  三、比例(14课时)

  1.比例的意义和性质…………………………………4课时左右

  2.正比例和反比例的意义…………………………………4课时左右

  3.比例的利用………………………………………………5课时左右

  整理和温习…………………………………………………1课时

  自行车里的数学……………………………………………1课时

  四、统计(2课时)

  勤俭用水……………………………………………………1课时

  五、数学广角(3课时)

  六、整理和温习(27课时)

  1.数与代数…………………………………………………10课时左右

  2.空间与图形………………………………………………9课时左右

  3.统计与概率………………………………………………4课时左右

  4.综合利用…………………………………………………4课时

  小学六年级数学下册课件 篇2

  目标:

  1、 理解圆柱体积公式的推导过程,掌握计算公式。

  2、 会运用公式计算圆柱的体积,提高学生知识迁移的能力。

  3、 在公式推导中渗透转化的思想。

  重点:

  理解圆柱的体积公式的推导过程。

  难点:

  圆柱体积的计算。

  用具:

  课件、圆柱模型。

  过程:

  1、 教师提问。

  (1)什么叫物体的体积?怎样求长方体的体积?

  (2)圆的面积公式是什么?

  (3)圆的面积公式是怎样推导的?

  2、 教师:同学们,我们在研究圆的面积公式的推导时,是把它转化成我们学过的长方形来解决的,那么,圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课,我们就来研究这个问题。(板书:圆柱的体积)

  1、 教学例5。

  讲授圆柱体积公式的推导。(演示动画“圆柱的体积”)

  (1)教师演示。

  把圆柱的底面分成16个相等的扇形,再按照这些扇形的形状,沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

  (2)学生利用学具操作。

  (3)启发学生思考、讨论:

  ①圆柱切开后可以拼成一个什么立体图形?(近似的长方体)

  ②通过刚才的实验你发现了什么?

  A、拼成的这个近似长方体的立体图形和圆柱相比,体积大小没变,但形状变了。

  B、拼成的这个近似长方体的立体图形和圆柱相比,底面的形状变了,由圆变成了近似长方形的立体图形,而底面的面积大小没有发生变化。

  C、这个近似长方体的立体图形的高就是圆柱的高,高的长度没有变化。

  (4)学生根据圆的面积公式的推导过程,进行猜想。

  ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

  ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

  ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

  (5)通过以上的观察,启发学生说出发现了什么。

  ①平均分的份数越多,拼起来的形状越接近长方体。

  ②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体图形的形状就越接近长方体。

  (6)推导圆柱的体积公式。

  ①学生分组讨论:圆柱的体积怎样计算?

  ②学生汇报讨论结果,并说明理由。

  教师:因为长方体的体积等于底面积乘高,(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积)近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

  ③用字母表示圆柱的体积公式。(板书:V=Sh)

  2、 教学例6。

  出示教材第26页例6。

  (1)学生读题,理解题意。

  (2)教师:要知道能否装下这袋奶,首先要计算出什么?

  学生:杯子的容积。

  (3)指明要计算杯子的容积,学生在练习本上完成。

  杯子的底面积:3.14×(8÷2)2=50、24(cm2)

  杯子的容积:50、24×10=502、4(mL)

  答:因为502、4大于498,所以杯子能装下这袋牛奶。

  3、 教学例7。

  师:看下面的问题你能解答吗?遇到了什么问题?有什么办法吗?(课件出示:教材第27页例7)

  生1:这个瓶子不是一个完整的圆柱,无法直接计算容积。

  生2:我们可以先转化成圆柱,再计算瓶子的容积。

  师:怎样转化呢?说说你的想法。

  学生可能会说:

  瓶子里的水的体积始终是不变的,即使瓶子倒置后,水的体积与原来还是一样的,这样就说明瓶子的容积其实就是水的体积加上18cm高的圆柱的体积。

  也就是把瓶子的容积转化成了两个圆柱的体积。

  ……

  师:尝试自己解答一下。

  学生尝试解答;教师巡视了解情况。

  组织学生交流汇报:

  瓶子的容积=3.14×(8÷2)2×7+3.14×(8÷2)2×18

  3.14×(8÷2)2×7+3.14×(8÷2)2×18

  =3.14×16×(7+18)

  =3.14×16×25

  =1256(cm3)

  =1256(mL)

  答:这个瓶子的容积是1256mL。

  只要学生解答正确就要给予肯定,不强求算法一致。

  【设计意图:让学生联系实际,灵活地运用圆柱体积的计算方法解决实际问题,使学生体会到在生活中,数学知识应用的广泛性】

  师:在本节课的学习中,你有哪些收获?

  学生可能会说:

  利用“转化”可以帮助我们解决问题。

  我们利用了体积不变的特性,把不规则图形转化成规则图形来进行体积的计算。

  在五年级时,计算梨的体积也是用了转化的方法。

  ……

  【设计意图:既帮助学生梳理了所学知识,又及时总结了学习方法,渗透了数学思想】

  圆柱的体积

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱的体积=底面积×高

  V=

  A类

  1、填表。

  底面积S(平方米) 高h(米) 圆柱的体积V(立方米)

  15 3

  6.4 4

  2、一个圆柱形水池,底面半径是10米,深1.5米。这个水池的占地面积是多少平方米?水池的容积是多少立方米?

  (考查知识点:圆柱的体积;能力要求:掌握圆柱体积的计算方法)

  B类

  两个底面积相等的圆柱,一个圆柱的高为9分米,体积为162立方分米。另一个圆柱的高为3分米,体积是多少立方分米?

  (考查知识点:圆柱的体积;能力要求:能运用圆柱体积计算的方法解决简单的问题)

  课堂作业新设计

  A类:

  1、 45 25.6

  2、 314平方米 471立方米

  B类:

  54立方分米

  教材习题

  第25页“做一做”

  1、 75×90=6750(cm3)

  2、 3.14×(1÷2)2×10=7.85(m3)

  第26页“做一做”

  1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不够。

  2、 3.14×(0.4÷2)2×5÷0.02≈31(张)

  第27页“做一做”

  3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL

  第28页“练习五”

  1、 3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

  2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL

  3、 3.14×(3÷2)2×0.5×2=7.065(m3)

  4、 80÷16=5(cm)

  5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975吨

  6、 表面积:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)

  体积:3.14×(6÷2)2×12=339.12(cm3)

  表面积20×10+20×15+15×10)×2=1300(cm2) 体积:20×10×15=3000(cm3)

  表面积:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)

  体积:3.14×(14÷2)2×5=769.3(cm3)

  7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)

  8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL

  932、58800 不够

  9、 81÷4.5×3=54(dm3)

  10、 3.14×(10÷2)2×2=157(cm3)

  11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能装满。

  12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)

  13、 30×10×4÷6=200(cm3)=200(mL)

  14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)

  15、 第四个圆柱的体积最小;第一个圆柱的体积最大。

  发现:同样一张长方形纸可以围成两个不同的圆柱,且以长边为圆柱的底面周长时围成圆柱的体积最大。

  小学六年级数学下册课件 篇3

  设计说明

  基于“小学数学课堂教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能。”这一新课标理念,在教学设计上有以下特点:

  1.在具体情境中观察、发现。

  教学伊始,创设情境,让学生“触景生思”,迅速感受到情境中存在的'数学问题。再结合教材提供的素材,用课件生动再现几个蕴涵数学知识的生活现象,使学生的数学思维快速得到激活,在思考、讨论中较快地发现“点、线、面、体”之间的关系。

  2.在动手操作中思考、质疑。

  在教学过程中,充分根据教学内容及学生的认知特点,为学生提供较多的参与数学活动的机会,让学生在动手操作中去发现、去思考、去质疑,促使学生运用多种感官全方位地参与数学活动,使学生在积累对圆柱、圆锥特征认识的同时,应用数学的意识和能力也得到培养。

  3.在合作学习中内化、建构知识。

  教学中,充分发挥学生的主体地位,积极引导学生通过合作去学习新知,使学生在合作学习中丰富自己对新知的认识,完成对圆柱、圆锥知识的建构,进而培养合作精神和竞争意识。

  课前准备

  教师准备 圆柱和圆锥模型 多媒体课件

  学生准备 圆柱、圆锥形实物 长方形、直角三角形、直角梯形及半圆形纸片 胶水 小棒 直尺 平板

  注:本书“上课解决方案”中的“教学目标”“教学重难点”见前面的“备课解决方案”。

  教学过程

  ⊙创设情境,导入新课

  1.观察、发现。

  将自行车后轮架支起,在后轮车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么。(课件出示情境图)

  学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验“点动成线”。

  2.导入新课。

  这节课,我们就结合“面的旋转”的知识来认识圆柱、圆锥。

  设计意图:通过观察自行车后轮车条上系上的彩带,并想象彩带随着车轮转动后形成的图形是什么,让学生初步体验“点动成线”这一现象,既能激发学生的学习兴趣,又能起到新旧知识衔接的作用。

  ⊙合作交流,探究新知

  1.课件出示教材2页上面的3幅情境图。

  师:仔细观察风筝的运动、雨刷扫过车窗、旋转门转动的现象,你有什么发现?

  学生讨论并汇报发现。

  发现一 蜈蚣形的风筝在天空运动的过程中,很多小节在天空中连成了一条线。

  发现二 雨刷扫过车窗,雨刷在左右摆动的过程中形成了一个扇形。

  发现三 长方形旋转门在转动的过程中形成了一个圆柱。

  教师小结:通过这三幅图可以知道“点动成线”“线动成面”“面动成体”。

  设计意图:小学生的思维正处在由形象思维向抽象思维过渡的阶段,因此,通过引导学生观察情境图激活学生的生活经验,体会“点、线、面、体”之间的联系。

  2.做游戏。

  (1)以小组为单位,把课前准备好的长方形、直角三角形、直角梯形及半圆形纸片用胶水粘在小棒上,做成一面面小旗。

  (2)用做好的小旗做“旋转游戏”,认真观察小旗旋转后形成的图形,可以动手画一画。

  (3)学生汇报,明确小旗旋转后所形成的图形。

  3.认识圆柱与圆锥。

  师:以前我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥也是立体图形,只是与长方体、正方体不同,围成的图形上有曲面。拿出我们的学具一起探索吧!

  (1)看:请学生根据自己的观察介绍一下圆柱与圆锥。(圆柱由两个圆面和一个曲面组成;圆锥由一个圆面和一个曲面组成)

  (2)滚:学生拿出圆柱和圆锥形学具在桌面上滚一滚,说说自己的发现。

  (3)剪:试着将圆柱和圆锥剪开,你发现了什么?

  学生们动手操作发现:圆柱剪开后得到一个长方形和两个圆;圆锥剪开后得到一个扇形和一个圆。

  设计意图:通过设计快速旋转小旗的活动,结合想象空间,体会圆柱和圆锥的形成过程,体会面与体之间的关系,发展学生的空间观念。

  小学六年级数学下册课件 篇4

  教学内容:教材第68页例2,练习十一第2题。

  教学目标

  综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。

  理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。

  教学重点、难点:从折线统计图中获信息,并能作出决策。

  教学过程

  一、引入:回忆折线统计图的特点。

  二、探究交流、总结规律

  1.小组探讨、交流。

  出示教科书第68页两幅折线统计图,提问:根据这两幅统计图,你们了解到哪些信息?根据提出的问题,让学生在小组内交流、讨论,谈感受。

  学生可能会谈到:

  A和B两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。

  引导释疑。

  在学生讨论交流的基础上,教师提问:请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。

  小结。

  引导学生认识到:在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。

  三、巩固练习

  1.完成教科书第69页练习十一2.

  2.补充练习。

  四、总结概括

  学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?

  2.谈你的收获。

  (本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)

  小学六年级数学下册课件 篇5

  教学内容:

  教科书第33页例二和相关的内容。

  教学目标:

  1.使学生理解和掌握圆锥体积的计算方法,并能运用公式解决简单的实际问题。

  2.使学生进一步理解圆锥与圆柱的联系,培养学生的推理思想。

  重点:

  掌握圆锥体积的计算公式,能利用公式解决相关的实际问题。

  难点:

  理解圆锥和圆柱之间的联系。

  学生准备:

  等底等高的圆柱和圆锥形容器各一个、水。

  一、复习

  圆柱和圆锥各有什么特征?生:底面,侧面,高和顶点。

  2.圆柱体积的计算公式是什么?

  生:圆柱的体积=底面积X高

  二、问题情境导入

  1.出示圆锥形小麦堆的图片

  师:只学过圆柱的体积计算,圆锥的体积怎样计算?还没学过怎么办呢?你有办法知道圆锥的体积吗(即:板书圆锥的体积)

  2.引导学生独立思考,提出猜测。

  老师:你们觉得圆锥的体积可能与哪种图形的体积有关呢?

  学生:圆柱的体积。

  老师:圆锥的体积和圆柱的体积之间会有什么样的关系呢?(等底等高的圆柱的体积可能是圆锥的3倍,4倍或其他)

  三、动手操作(四人一小组)

  1.让学生分小组先议一议,如何实验,再动手。

  老师:用等底等高的圆锥往圆柱里倒水,看几次能倒满?

  学生:每次都倒满,正好倒了三次。

  老师:说明了什么?

  学生:说明圆锥的体积是和它等底等高的圆柱的体积的1/3(圆锥的体积=圆柱的体积x1/3)

  老师:圆柱的体积等于什么?

  学生:底面积x高

  老师:圆锥的体积公式是什么?

  学生:圆锥的体积=圆柱的体积x1/3=底面积x高x1/3字母公式:V圆锥=1/3V圆柱=1/3Sh2.

  总结结论。

  等底等高的圆柱体积等于圆锥体积的3倍,也可以说圆锥的体积等于圆柱体积的1/3。

  2..圆锥体积计算公式

  师:圆锥的体积V=1/3sh

  四、巩固练习

  1.课本34页做一做的第一题

  2.解决情景问题让学生自己独立完成,集体纠正。

  五、扩展延伸有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件,要削去钢材多少立方厘米?

  六、谈谈收获

  1.圆锥的体积二圆柱体积X1/3二1/3X底面积X高

  2.等底等高的圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的1/3。

  小学六年级数学下册课件 篇6

  教学目标:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、进一步提高学生解决问题的能力。

  教学重、难点:

  1、理解圆柱体积公式的推导过程。

  2、能够初步地学会运用体积公式解决简单的实际问题。

  3、理解圆柱体积公式的推导过程。

  教学准备:

  圆柱切割组合模具、小黑板。

  教学过程:

  一、创设情境,生成问题

  1、什么是体积?(物体所占空间的大小叫做物体的体积。)

  2、长方体的体积该怎样计算?归纳到底面积乘高上来。

  3、圆的面积怎样计算?

  二、探索交流,解决问题

  1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

  (启发学生思考。)

  2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

  3、思考:

  (1)圆柱切开后可以拼成一个什么形体?(长方体)

  (2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

  (拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

  4、推导圆柱体积公式

  小组讨论:怎样计算圆柱的体积?

  学生汇报讨论结果。

  长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

  师:圆柱的体积怎样计算?用字母公式,怎样表示?

  板书:V=Sh

  5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

  三、巩固应用练习。

  1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

  2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

  四:课堂小结:

  通过这节课你学会了哪些知识,有什么收获?

  五:课后作业:

  教材第9页,练一练第1、3、4、题

  小学六年级数学下册课件 篇7

  设计说明

  “反比例”是在学生学过“变化的量”“正比例”“正比例图象(画一画)”的基础上进行教学的。本着“学生是学习的主体”这一理念,本节课在教学中最大限度地为学生提供了自主探究的机会。

  1.借助意义、实例,渗透思想。

  教学伊始,借助正比例的意义和生活实例,使学生体会函数思想,充分理解正比例比值不变的特点,为学生探究成反比例的两个量之间的关系,理解、掌握反比例的意义及特点奠定良好的基础。

  2.借助教材情境,在观察、讨论中发现规律。

  教学中,先根据教材提供的情境,理解长方形的面积一定时,长方形相邻两边的边长成反比例关系,再结合王叔叔游长城这一情境,引导学生在观察、讨论中发现速度和时间这两个量之间的关系:速度变化,所用的时间也随着变化,速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。学生通过自己的努力,了解反比例的意义,理解反比例的特点。

  教学目标:

  1、通过观察、操作和比较,让学生认识反比例的意义,理解、掌握反比例的变化规律及其特征,能依据反比例的意义判断两种相关联的量成不成反比例。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  3、培养学生的分析、推测能力,并向学生渗透初步的函数思想。

  教学重难点

  教学重点:理解反比例的意义。

  教学难点:掌握判断两种量是否成反比例的方法。

  课前准备 教师准备 多媒体课件 教学过程 :

  一、复习旧知,引入新课

  二、复习提问。

  1、什么是正比例? 两个相关联的量,一个量变化,另一个量也随着变化,如果这两个量中相对应的两个数的比值一定,这两个量就叫作成正比例的量,它们的关系叫做正比例关系。

  2、判断下面各题中的两个量是否成正比例?

  ①工作效率一定,工作时间和工作总量。

  ②每头奶牛的产奶量一定,奶牛的头数和总产奶量。

  ③正方形的边长和它的面积。

  3、引入新课。

  师:通过学习我们已经知道了两个量成正比例关系的变化规律。正和反相对,有正比例,那是否有反比例呢?如果有,什么样的两个量成反比例关系呢?又该如何判断呢?今天这节课我们就一起来研究两个量成反比例关系的变化规律。

  (设计意图:通过复习正比例的意义,判断两个量是否成正比例,检验学生掌握知识的能力,为学习新课奠定基础。) 二、合作交流,探究新知 1、探究长方形相邻两边边长的变化规律。

  (1) 课件出示教材46页表1和表2。

  用x,y表示长方形相邻两边的边长,表1是面积为24 平方厘米的长方形相邻两边边长的变化关系,表2是周长为24 厘米的长方形相邻两边边长的变化关系。请把表格填写完整,并说说你发现了什么。(单位:厘米)生独立填表。

  (2) 汇报发现。

  (长方形一条边的边长随着邻边边长的增加而减少)

  (3) 讨论:表1和表2中,长方形相邻两边边长之间的变化规律相同吗? (小组内讨论、交流后汇报)

  小结:面积是24 平方厘米的长方形相邻两边边长之间的关系:1×24=2×12=3×8=4×6=…相邻两边边长的积都是24。

  生2:周长是24 厘米的长方形相邻两边边长之间的关系:1×11=11,2×10=20,3×9=27…相邻两边边长的积不相等。1+11=2+10=3+9=…虽然相邻两边边长的积不相等,但相邻两边边长的和相等。

  2、探究速度与时间的变化规律。

  (1) 课件出示教材46页下面例题。

  结合“王叔叔要去游长城”的情境,初步感受成反比例的量之间的关系。

  王叔叔要去游长城,不同的交通工具的速度和行驶所需时间如下,请把下表填完整。

  引导学生独立计算、填表。(根据速度和时间求路程) 从上表中你发现了什么? 生1:我发现时间与速度的变化有关系。

  生2:我发现速度增加,时间减少;

  速度减少,时间增加。

  生3:我发现速度与时间的积是一定的,10×12=60×2=80×1.5=120,积都是120,即“速度×时间=路程(一定)”。

  师总结:像这样,速度和时间两个量,速度变化,所用的时间也随着变化,而且速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。

  想一想:第1个问题中,表1和表2中的长方形相邻两边的边长成反比例吗? 生独立思考后汇报。

  当面积一定时,长方形相邻两边边长的积一定,所以相邻两边的边长成反比例。

  当周长一定时,长方形相邻两边边长的和一定,但是积不相等,所以相邻两边的边长不成反比例。

  3、在知识迁移中总结用字母表示反比例的方法。

  师:结合正比例关系的字母表达式想一想:反比例关系怎样用字母表示?

  生:如果用x和y表示两个相关联的量,用k(一定)表示它们的积,反比例关系可以用下面的公式表示:

  x×y=k(一定)(板书公式并强调积一定)

  4、在对比学习中,明确正比例与反比例的异同。

  (1)正比例与反比例有什么相同点和不同点?学生交流并完成手中表格 相同点是都表示两个相关联的量,且一个量变化,另一个量也随着变化。

  不同点是正比例关系中两个相关联的量的比值一定,反比例关系中两个相关联的量的积一定。

  (2)你还能列举出哪些日常生活中的反比例?(学生自主举例,合理即可)

  设计意图:结合新知内容,循序渐进,层层深入。让学生带着问题进入新课,并结合具体情境及教材内容引导学生逐步理解成反比例的量、反比例的意义和特点及正、反比例的区别,使学生的观察能力、发现能力、知识归纳能力、表达能力以及合作意识得到提高。

  三、巩固练习,拓展应用

  1、完成教材48页“练一练”1题。(生独立完成,借助表中数据说明即可。师巡视指导)

  设计意图:训练学生独立完成习题的能力,在判断题的基础上增加难度,注重练习题的梯度性,使学生的数学思维得到更好的发展。

  2、工作效率、工作总量和工作时间这三种量中,在什么情况下,哪两种量成反比例?在什么情况下哪两种量成正比例?

  3、判断下面各题中的两个量是否成反比例,并说明理由。

  (1)(行驶的路程一定,车轮的周长与车轮需要转动的圈数。

  (2)平行四边形的面积一定,它的底和高。

  (3)笑笑从家步行到学校,已走的路程和剩下的路程。

  (4)周长一定时,圆的直径和圆周率。

  四、课堂总结

  1、这节课你学到了哪些知识?还有哪些不懂的地方?

  2、正比例与反比例有什么区别?(引导学生从意义、表达式等方面进行汇报)

  五、布置作业

  请同学们利用手中的表格试着画一画反比例的图象。

  板书设计 :

  反比例 速度×时间=路程(一定) 表达式:x×y=k(一定) 反比例的特征:

  1、两种相关联的量

  2、一种量变化,另一种量也随着变化

  3、积一定速度变化,所用的时间也随着变化,

  小学六年级数学下册课件 篇8

  教学目标:

  1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:

  教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

  教学设计:

  一、创设情境导入

  1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

  2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

  3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

  二、体验探究

  1、认识圆柱

  拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

  (1)学生观察,并用手摸表面、滚一滚。

  (2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

  预设;

  2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

  3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

  4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

  5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

  那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

  (3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

  6、圆柱的侧面积。

  (1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

  (2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

  预设:长方形、正方形

  (3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

  师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

  (4)下面请同学们认真观察,仔细的想一想

  我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

  ①同桌互相讨论一下。

  ②集体交流。(指名说,教师随即板书)

  长方形的面积长宽

  圆柱的侧面积底面周长高

  (5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

  这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

  如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

  三、实践应用

  1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

  2、29页1、2题

  四、课堂小结。

  通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

  五、拓展延伸

  在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

  小学六年级数学下册课件 篇9

  教学目标:

  1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系,并能学以致用,解决大树、旗杆、高楼等物体有多高的问题。

  2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

  3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

  教学重点:

  引导学生探索发现“同一地点,同时测量长度不同的竿,高度与影长的比值是相等的”教学难点:运用发现的规律解决“大树有多高”之类的实际问题。

  教学准备:

  课前测量数据,多媒体课件。

  教学过程设计:

  一、预习导学

  1、师:同学们,下面我们来看段小视频。

  2、师:同学们,物体的影子是怎么形成的呢?

  3、师:所形成的影子的长短是由什么决定的呢?(班班通出示图片,学生观察、交流、汇报。)

  4、师:那么物体的影子长度和物体的高度之间有着什么样的联系呢?你们想知道吗?这节课,我们就来一起研究一下。(板书课题)

  二、新课探究

  1、探究两根长度相同的竿的影长。

  (出示视频)学生记录数据。

  师:通过同学的测量,同时同一地点测量两根长度相同的竿,影长有什么关系?

  (生分析数据,汇报)结论:同一时间,同一地点测量相同长度的竿,影长是相同的。

  2、探究两根长度不同的竿的影长。

  (出示视频)学生记录数据

  师:通过测量,同时同一地点测量两根长度不同的竿,影长有什么关系?(生分析数据,汇报)

  结论:同一时间,同一地点测量不同长度的竿,影长是不相同的。

  3、探究竿长度与影长之间的关系。

  (出示表格)1号2号3号4号竿长/cm

  影长/cm竿长与影长的比值

  要求:竹竿长与影长的比值保留两位小数。(小组合作完成)观察比较:比较每次求得的比值,你有什么发现?(思考,交流,汇报)结论:在同一地点,同时测量不同长度的竿,高度与影长的比值是相同的。

  4、验证结论师:刚才发现的结论正确么?如果是正确的,老师课前还准备了5号竿,同学们运用所发现的结论,计算一下5号竿的竿长。

  (出示视频,学生记录数据,计算)

  三、当堂练习

  1、在上海中心大厦测得其影长为158米,同时测得一根竹竿的长为180厘米,影长为45cm,那么长海中心大厦的高为多少米?

  2、早晨在校园里测得一棵梧桐树的影长为37。5米,同时测得一根竹竿长2米,其影长为3米,这棵梧桐树高()米?

  3、在学校的操场上,有一棵大树和一根旗杆,若此时大树的影长6m,旗杆高4m,影长5m,求大树的高度?

  四、你知道么?约公元前600年,泰勒斯从遥远的希腊来到了埃及。在此之前,他已经到过很多东方国家,学习了各国的数学和天文知识。到埃及后,他学会了土地丈量的方法和规则。他学到的这些知识能够帮助他解决这个千古难题吗?他苦苦思索着。有一天,当他看到金字塔在阳光下的影子时,他突然想到办法了。泰勒斯仔细地观察着影子的变化,找出金字塔地面正方形的一边的中点(这个点到边的两边的距离相等),并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离。他稍做计算,就得出了这座金字塔的高度。

  五、课堂总结

  小学六年级数学下册课件 篇10

  教学目标:

  1、结合具体问题,经历认识成反比例关系的量的过程。

  2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

  3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。

  课前准备:

  找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。

  教学过程:

  一、问题情境

  1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?

  出示《安徒生童话》,可了解一下谁读过这本书。

  师:猜一猜,这本书有多少页?

  学生猜测,然后实际看一看,说出页数。

  师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。

  小黑板出示:亮亮红红聪聪丫丫

  每天看的页数12 15 18 20

  看的天数15 12 10 9

  2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?

  学生可能说出很多,如:

  ●亮亮每天看12页,看了15天。

  ●红红每天看15页,看了12天。

  ●聪聪每天看18页,看了10天。

  ●丫丫每天看20页,看了9天。

  ●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。

  二、认识反比例

  (一)读书问题

  1、师:观察表中的数据,你发现了什么规律?

  预设:●每天看的页数越多,看的天数就越少。

  ●每天看的页数越少,看的天数就越多。

  ●每天看的页数乘看书的天数,积是一定,都是180。

  第三种意见学生没有提出,教师启发:

  师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:

  每天看的页数×需要的天数=书的总页数(一定)

  2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)

  师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。

  板书:成反比例的量

  3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。

  师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?

  学生说,教师填在表格中。

  面值5元1元5角2角1角

  张数2 10 20 50 100

  师:仔细观察表中数据,你都发现了什么?

  学生可能会说:

  ●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。

  ●表中面值与张数的积是一定的。

  师:你们能总结出这里的数量关系式吗?

  学生回答,教师随机板书:

  钱的面值×张数=10(元)

  4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。

  学生可能会说:

  ●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的张数就变小;钱的面值变小,张数就变大。

  ●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。

  师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。

  学生讨论后,多请几人发言。

  5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?

  学生可能会说:

  ●它们都是乘积一定,一个量变大,另一个量变小。

  师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关系称为反比例关系。这段话在课本第13页,请同学们自己读一读。

  学生自己读书。

  6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?

  学生可能会说:

  ●是两个相关联的量。

  ●这个量的乘积一定。

  ●一个量变大,另一个就变小;一个量变小,另一个就变大。

  三、尝试应用

  1、让学生自己判断“试一试”中的三组数量。

  师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。

  给学生独立思考、交流的时间。

  2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?

  重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。

  3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。

  学生交流,然后指名举例并说明理由。

  4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。

  给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。

  学生可能会说:

  ●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。

  ●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。

  学生如果有其他说法,只要意思对,就给予肯定。

  四、课堂练习

  1、练一练第2题,先让学生自己读题并判断,然后指名汇报。

  2、练一练第3题,完成表格再判断,交流时说出自己的想法。

  3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。

  五、知识拓展

  介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。

  师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。

  小学六年级数学下册课件 篇11

  教学目标

  1、通过讨论、交流观察等方法,会说出圆柱体侧面积和表面积的计算方法。

  2、通过具体情境灵活运用圆柱表面积的计算解决实际问题。

  教学重难点

  求圆柱的侧面积

  教学工具

  圆柱教具

  教学过程

  环节一:复习导入

  师:上节课,我们进一步认识了圆柱,圆柱有哪些特征?它各部分的名称叫什么?

  师:两个底面和侧面合在一起就是圆柱的表面。这节课,我们一起来学习圆柱的表面积。(板书:圆柱的表面积)

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?(老师拿着长方形纸板)

  师:那它的面积如何求?

  师:圆的面积和周长公式是什么?

  师:那圆柱的表面积怎么计算?是哪些面积的和呢?

  师:现在我们一起来学习圆柱的表面积,刚才大家讨论两个底面面积和侧面面积合在一起就是圆柱的表面积,底面积会求了,那我们先一起来学习一下如何求圆柱的侧面积。

  复习各种图形的面积的公式,让学生观察模型,认识到圆柱的表面积是两个底面和一个侧面面积的和,为本课的学习做好铺垫

  环节二:探究新知

  目标1:通过讨论、观察等方法,会说出圆柱体侧面积和表面积的计算方法

  1.圆柱的侧面积

  (1)推导公式

  在前面的学习中,我们已经知道圆柱的展开图(沿着圆柱的一条高剪开,圆柱的侧面是一个长方形

  师:圆柱的侧面展开图是一个长方形。小组讨论:

  问题:①这个长方形和圆柱体有哪些关系?②你能推导出圆柱侧面积的计算方法吗?师板书:

  长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  S侧=Ch

  (2)利用公式计算(加深对公式的理解,并能灵活运用公式)

  通过让学生自己动手操作,自己体会出圆柱与长方形之间的关系。小组间互助,共同探讨知识的过程,使学生自己发现圆柱侧面积公式,对知识理解得更透彻,从中感受到学习的快乐。(评价目标一)

  环节二:探究新知 目标2:通过具体情境灵活运用圆柱表面积的计算解决实际问题。

  例:一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。(规范格式)

  S侧=Ch=3.14×0.5×1.8

  =2.826

  ≈2.83(㎡)

  答:它的侧面积约是2.83平方米。

  尝试练习,让学生计算圆柱的侧面积。(教师巡视)

  ①一圆柱的底面周长是10厘米,高12厘米,求它的侧面积;

  ②一圆柱底面半径是5厘米,高6厘米,求它的侧面积;

  ③圆柱底面半径是2分米,高是直径的2倍,求它的侧面积

  2. 圆柱的表面积

  (1)推导公式

  同学们已经学会求圆柱的侧面积,那么如何求圆柱的表面积呢?

  根据学生汇报过板书:

  圆柱的表面积=圆柱的侧面积+2个底面面积的和

  S表=S侧+2×S底

  (2)利用公式计算

  例4:一顶圆柱形,高750px,帽顶直径500px,做这样一顶帽子至少需要用多少面料?(得数保留整十数。)

  ①学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积。)

  ②求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  ③指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

  由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。

  通过独立尝试、汇报交流,评析。( 评价目标二)

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  反思

  圆柱圆锥是小学阶段几何教学最后一部分内容,圆柱表面积计算公式的探究非常适合学生自主探究。结合我校开展的“提纲导学、自主探究”活动,在本节课的教学中,我做了积极的尝试,效果非常不错。

  首先,在新授课之前,我在去年去老师设计的道学提纲基础上稍作修改,形成了自己的导学提纲:

  1、找一个圆柱形的物体,测量出它的底面直径和高(尽可能取整数,最多保留一位小数)

  2、你能动手用彩色纸给这个圆柱形的物品穿上漂亮的“外衣”吗?动手试一试“穿衣”之前先思考:圆柱形物品有哪几个面?这些面都是什么形状?

  3、把圆柱体的漂亮外衣脱下来,展开铺在桌面上观察:圆柱的外衣包含哪几部分?都是什么形状的?

  4、你能算出用了多少彩色纸吗?注意观察:计算每部分的面积所需要的数据,就是圆柱的什么?

  5、将你的计算过程试着写在反面。

  把这个提纲发给学生,作为晚上的作业。因为学生有了圆的周长、圆的面积提纲导学探究经历和体验,对这次的探究比较有兴趣,加之家长的大力支持,全班同学都很认真很用心的进行了探究实践,不及给圆柱体穿的外衣漂亮、精致,而且认真按提纲的要求进行了观察、思考。

  课堂上,学生饶有兴趣的互相展示了自己的作品,互相交流了自己的实践过程和操作中的乐事。在此基础上,孩子们争先恐后的举手发言,向全班同学展示自己的探究过程和发现。他们通过动手实践发现:给圆柱穿上外衣需要一块长方形的彩纸和两个同样大小的圆形,长方形那个彩纸的长等于圆柱地面周长,宽就是圆柱的高,而两个圆形就是圆柱的底面。孩子们互相交流,互相补充,很自然很直观地得到了圆柱的表面积计算公式,老师在这其中只起到了一个穿针引线的作用,课堂气氛活跃,孩子们学的轻松愉快而且扎实。

  不足的是,课后练习时,学生计算时由于数字不好算,常有为难思想,计算失误较多。还有的学生,列式时容易丢三落四。

  通过本节课的教学,我以后会注意以下问题:

  1、提纲导学法是很不错的方法,以后会根据课题继续尝试。

  兴趣是最好的老师,这种作业学生比较喜欢,并且各种能力都会得到锻炼和提高;让学生能够按提纲步骤探究,避免了上课探究时小组活动中部分孩子的“观众、听众”角色,每个人都要自己亲手去做,提高了学生参与意识;家长参与了孩子的活动过程,关注了孩子的发展过程,有助于了解孩子的情况;

  2、探究不能只重过程忽视结果

  在学生探究得到结果后,更要重视知识的灵活运用,要注意不能让学生重过程轻结果,更要重视培养和发展学生运用所学知识解决实际问题的能力。解决问题时,比较复杂的问题,不要列综合算式,以免把本来会做的题弄错,提高正确率。

  小学六年级数学下册课件 篇12

  教学过程

  1、出示主题图。教材第2页主题图。

  2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)

  引出课题并板书:负数的初步认识

  1、教学例1 。

  (1)教师板书关键数据:0℃ 。

  (2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。

  比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。

  比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。

  (2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

  (4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

  2、学生讨论合作,交流反馈。

  (1)请同学们把图上其它各地的温度都写出来,并读一读。

  (2)教师展示学生不同的表示方法。

  (2)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

  2、教学例2。

  (1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:

  像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的是支出的钱数。

  (2)教师:上述数据中500和-500意义相同吗?

  (500和-500意义相反,一个是存入,一个是支出)。

  你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?

  师把学生的表示结果一一板书在黑板上。

  4、归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

  (2)教师展示分类的结果,适时讲解。

  像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

  像-8,-4,-500,-20这样的数,我们把它叫做负数。

  (2)那么0应该归为哪一类呢?

  组织学生讨论,相互发表意见。

  (4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (5)你在什么地方见过负数?

  鼓励学生注意联系实际举出更多的例子。

【小学六年级数学下册课件】相关文章:

高二数学下册课件08-10

小学六年级下册课件03-09

人教版小学六年级下册课件03-04

小学六年级语文下册课件03-06

人教版小学六年级语文下册课件03-05

六年级下册匆匆课件03-31

人教版小学六年级下册语文课件03-24

六年级下册凡卡课件03-19

六年级下册语文匆匆课件03-22

六年级下册《凡卡》课件03-13