我要投稿 投诉建议

高二平面向量知识课件

时间:2022-11-12 09:04:41 高二 我要投稿

高二平面向量知识课件(通用10篇)

  学习数学不仅要有强烈的学习愿望和学习热情,而且还要有科学的学习方法,只有掌握好了学习方法,数学学习起来就容易得多了。下面是小编为大家整理的高二平面向量知识课件,欢迎阅读。

高二平面向量知识课件(通用10篇)

  高二平面向量知识课件 篇1

  一:说教材

  平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

  二:说学习目标和要求

  通过本节的学习,要让学生掌握

  (1):平面向量数量积的坐标表示。

  (2):平面两点间的距离公式。

  (3):向量垂直的坐标表示的充要条件。

  以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

  三:说教法

  在教学过程中,我主要采用了以下几种教学方法:

  (1)启发式教学法

  因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

  (2)讲解式教学法

  主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

  主要辅助教学的手段(powerpoint)

  (3)讨论式教学法

  主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

  四:说学法

  学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

  五:说教学过程

  这节课我准备这样进行:

  首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

  继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

  引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

  (1) 模的计算公式

  (2)平面两点间的距离公式。

  (3)两向量夹角的余弦的坐标表示

  (4)两个向量垂直的标表示的充要条件

  第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

  例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

  例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

  再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

  然后是学习小结(由学生完成)

  最后作业布置!

  高二平面向量知识课件 篇2

  一、教学目标:

  1.知识与技能:

  了解平面向量基本定理及其意义, 理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示。

  2.过程与方法:

  让学生经历平面向量基本定理的探索与发现的形成过程,体会由特殊到一般和数形结合的数学思想,初步掌握应用平面向量基本定理分解向量的方法,培养学生分析问题与解决问题的能力。

  3.情感、态度和价值观

  通过对平面向量基本定理的学习,激发学生的学习兴趣,调动学习积极性,增强学生向量的应用意识,并培养学生合作交流的意识及积极探索勇于发现的学习品质。

  二、教学重点:平面向量基本定理。

  三、教学难点:平面向量基本定理的理解与应用。

  四、教学方法:探究发现、讲练结合

  五、授课类型:新授课

  六、教 具:电子白板、黑板和课件

  七、教学过程:

  (一)情境引课,板书课题

  由导弹的发射情境,引出物理中矢量的分解,进而探究我们数学中的向量是不是也可以沿两个不同方向的向量进行分解呢?

  (二)复习铺路,渐进新课

  在共线向量定理的复习中,自然地、渐进地融入到平面向量基本定理的师生互动合作的探究与发现中去,感受着从特殊到一般、分类讨论和数形结合的数学思想碰撞的火花,体验着学习的快乐。

  (三)归纳总结,形成定理

  让学生在发现学习的过程中归纳总结出平面向量基本定理,并给出基底的定义。

  (四)反思定理,解读要点

  反思平面向量基本定理的实质即向量分解,思考基底的不共线、不惟一和非零性及实数对

  的存在性和唯一性。

  (五)跟踪练习,反馈测试

  及时跟踪练习,反馈测试定理的理解程度。

  (六)讲练结合,巩固理解

  即讲即练定理的应用,讲练结合,进一步巩固理解平面向量基本定理。

  (七)夹角概念,顺势得出

  不共线向量的不同方向的位置关系怎么表示,夹角概念顺势得出。然后数形结合,讲清本质:夹角共起点。再结合例题巩固加深。

  (八)课堂小结,画龙点睛

  回顾本节的学习过程,小结学习要点及数学思想方法,老师的“教 ”与学生的“学”浑然一体,一气呵成。

  (九)作业布置,回味思考。

  布置课后作业,检验教学效果。回味思考,更加理解定理的实质。

  高二平面向量知识课件 篇3

  一、单元教学内容分析

  本章节内容教学北师大版教材安排在三角函数章节之后,教本必修四的中间位置,为后面推导和差角公式做好铺垫,为解三角形问题和平面几何中的许多计算问题提供便利工具。

  向量既有代数特征,又有几何特征,是沟通代数与几何的桥梁。向量具有代数特征,运算及其规律是代数学研究的基本问题。向量可以进行多种运算,如向量加、减、数乘和叉乘等。向量运算具有一系列丰富的运算性质,与数运算相比,向量运算扩充了运算的对象和运算的性质。向量具有几何特征,它不仅可以描述、刻画几何中的点、线、面及其位置关系,数量关系,还可以表示空间当中的曲线与曲面,是研究几何问题的基本工具。本教材能从学生熟悉的实例出发,经过观察、分析、归纳等方法概括出向量的相关概念,比以往教材更能使学生产生自然而亲切的感觉,有助于激发学生的学习兴趣,调动学生学习的积极性,使他们真正认识到数学的应用价值,从而提高学生应用数学的意识。

  向量是刻画现实世界的重要的数学模型。它为理解抽象代数、线性代数、泛函分析提供了基本数学模型。他与物理学科紧密相连。由于向量是近代数学中重要和基本的数学概念,是沟通代数、几何与三角函数的一种重要工具,它有极其丰富的实际背景,有着广泛的实际应用,因此它具有很高的教育教学价值,它对更新和完善知识结构具有重要的意义。

  教材结合向量的几何背景——有向线段,引入向量的表示法,规定了向量的长度的概念。定义了零向量、单位向量、平行向量和共线向量等概念。对于许多旧有的知识利用向量方法去处理,就会变得非常简捷,甚至变得十分明了,从而有助于学生对这些知识有更深刻的理解,更牢固的记忆,更自如的应用,总之,有助于学生建立良好的数学认知结构。通过本部分内容的学习,可以促使学生认识到向量与实际生活紧密相连,它在解决实际问题当中有着广泛应用。

  二、单元学生情况分析

  1、学生在初中阶段接触过物理学里面的矢量,已具备基本的认知水平和运算能力,具备在运算中探索和发现数学结论的基本能力。

  2、学生已基本掌握函数和三角函数章节的基础知识,会运用数形结合法,整体代换,分类讨论法,类比思想解决实际问题。

  3、学生已具备基本的分析和解决数学问题的勇气和智慧。

  三、教学目标

  1.知识与技能目标

  ⑴理解并掌握平面向量的基本概念。通过力与力的分析实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

  ⑵通过实例,掌握向量的加、减、数乘向量和两向量数量积运算,并理解其几何意义。

  ⑶理解并掌握向量共线和垂直问题。理解平面向量基本定理及其意义。掌握平面向量的正交分解及其坐标表示。会用坐标表示向量的加、减、数乘向量及数量积运算。

  ⑷通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。体会平面向量的数量积与向量投影的关系。掌握数量积的坐标表示,能运用数量积表示两个向量的夹角,会用数量积来判断向量的垂直问题。

  2.过程与方法目标

  ⑴通过实例让学生亲身经历观察、分析、归纳、抽象概括的思维过程。感受和认知不同维度中的向量表示。

  ⑵通过让学生体会平面向量数量积的物理意义和几何意义,体会数学与物理是密切联系的。

  ⑶经历用向量方法解决某些简单的平面几何及力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,使学生的运算能力和解决实际问题的能力得到提升。

  3.情感、态度与价值观

  ⑴从学生熟悉的生活实例出发建立平面向量概念,激发学生的学习兴趣。从物理知识引入到数学知识的形成过程,使学生体会到知识之间的相互联系,建立全面、科学的价值观。

  ⑵通过对向量正交分解的学习,使学生进一步体会一般的问题往往归结为人们最熟悉的特殊问题。

  ⑶通过对本章节内容的学习,使学生体会到数学和其他知识相联系,体会数学作为解决问题的工具的作用。

  重点:

  1.平面向量的概念,运算,共线问题,平面向量的基本定理。

  2.平面向量的坐标表示,向量数量积的概念和性质,向量的垂直问题。

  3.体会向量在解决平面几何问题和物理问题中的作用。

  难点:

  1.对自由向量,向量加、减法数乘向量定义的理解和对平面向量基本定理理解。

  2.对平面向量运算坐标表示及向量数量积概念的理解,平面向量数量积的应用。

  3.用向量表示几何关系。

  四、单元教学活动

  1.引入向量相关概念时,除用教材中给出的实例外,鼓励学生列举实际生活中的其他实例。

  2.学习向量知识的同时,尽量地联系熟悉的物理现象或其他生活实例,用向量表述和刻画。以便让学生领悟到知识之间和学科之间的相互联系。

  3.通过协作讨论,根据生活中的实际案例,边了解概念,边画图;边进行计算,边画图;进一步培养学生数形结合、形象思考、分析问题的习惯。

  4.在学习本章知识的过程中,应注意向量运算的两个方面:几何意义与代数表示。由于新知识的学习过程中,它们相对孤立,学生对他们的认识也就不容易形成体系。所以在教授新课时应有意识地做一些渗透和铺垫,在章节小结时应强调它们的区别与联系,以便学生更加全面、深刻的认识向量。

  高二平面向量知识课件 篇4

  各位老师大家好,今天,我说课的内容是:人教B版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析

  一、说教材

  1、关于教材内容的分析

  (1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。

  (2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它也为平面向量坐标表示的学习打下基础。

  (3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。

  2、关于教学目标的确定

  根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。

  1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量

  ②会把任意向量表示为一组基地的线性组合。掌握线段中点的向量表达式

  2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力

  3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。

  3、重点和难点的分析

  掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。

  二、说教学方法与教学手段

  结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。

  此模式的流程为激发兴趣——发现问题,提出问题——自主探究,解决问题——自主练习,采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。

  三、说学情分析与学法指导

  学情分析:前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备。

  学法指导:教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、

  高二平面向量知识课件 篇5

  第一教时

  教材:

  向量

  目的:

  要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。

  过程:

  一、开场白:本P93(略)

  实例:老鼠由A向西北逃窜,猫在B处向东追去,

  问:猫能否追到老鼠?(画图)

  结论:猫的速度再快也没用,因为方向错了。

  二、提出题:平面向量

  1.意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等

  注意:1数量与向量的区别:

  数量只有大小,是一个代数量,可以进行代数运算、比较大小;

  向量有方向,大小,双重性,不能比较大小。

  2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

  2.向量的表示方法:

  1几何表示法:点—射线

  有向线段——具有一定方向的线段

  有向线段的三要素:起点、方向、长度

  记作(注意起讫)

  2字母表示法: 可表示为 (印刷时用黑体字)

  P95 例 用1cm表示5n mail(海里)

  3.模的概念:向量 的大小——长度称为向量的模。

  记作: 模是可以比较大小的

  4.两个特殊的向量:

  1零向量——长度(模)为0的向量,记作 。 的方向是任意的。

  注意 与0的区别

  2单位向量——长度(模)为1个单位长度的向量叫做单位向量。

  例:温度有零上零下之分,“温度”是否向量?

  答:不是。因为零上零下也只是大小之分。

  例: 与 是否同一向量?

  答:不是同一向量。

  例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?

  答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。

  三、向量间的关系:

  1.平行向量:方向相同或相反的非零向量叫做平行向量。

  记作: ∥ ∥

  规定: 与任一向量平行

  2.相等向量:长度相等且方向相同的向量叫做相等向量。

  记作: =

  规定: =

  任两相等的非零向量都可用一有向线段表示,与起点无关。

  3.共线向量:任一组平行向量都可移到同一条直线上 ,

  所以平行向量也叫共线向量。

  例:(P95)略

  变式一:与向量长度相等的向量有多少个?(11个)

  变式二:是否存在与向量长度相等、方向相反的向量?(存在)

  变式三:与向量共线的向量有哪些?( )

  四、小结:

  五、作业:

  P96 练习 习题5.1

  高二平面向量知识课件 篇6

  今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。

  一、 教材分析:

  1、教材的地位和作用

  向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.

  结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:

  2、教学目标

  (1) 知识与技能目标

  1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;

  2)识记向量模的定义,会用字母和线段表示向量的模

  3)知道零向量、单位向量的概念

  (2) 过程与方法目标

  学生通过对向量的学习,能体会出向量来自于客观现实 ,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.

  (3)情感态度与价值观目标

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度

  3、教学重难点

  教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量

  教学难点:向量的几何表示的理解,对零向量和单位向量的理解

  二、学情分析

  (1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.

  (2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

  (3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究

  三、教法学法

  教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学

  学法:在学法上,采用的是探究,发现,归纳,练习。从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程

  四、教学过程

  课前:

  为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。其中包括一些向量的基本概念,并提出:

  1、你学过的其他学科中有没有可以称为向量的?

  2、向量的特点是什么?有几种描述向量的表示方法?

  3、零向量的特点是什么?

  【设计意图】目的是通过课前的预习明确自己需要在本节课中解决的问题,带着问题听课,我会在上课前就学生的完成情况明确主要的教学侧重点,真正打造高效课堂。

  课上教学过程:

  1、 创设情境

  数学的学习应该是与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中发现数学,探究数学,认识并掌握数学,由生活的实例引入,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量

  【设计意图】形成对概念的初步认识,为进一步抽象概括做准备。

  2、 形成概念

  结合物理学中对矢量的定义,给出向量的描述性概念。对于一个新学的量定义概念后,通常要用符号表示它。怎样把我们所举例子中的向量表示出来呢?

  采取让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量。明确为什么可以用有向线段表示向量,引导学生总结出向量的表示方法,强调印刷体与手写体的区别。结合板书的有向线段给出向量的模。

  单位向量、零向量的概念

  【即时训练】

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知

  3、 知识应用

  本阶段的教学,我采用的是教材上的两个例题,旨在巩固学生对平面向量的观念,提高学生的动手实践能力,掌握求模的基本方法,提升识图能力

  4、 学以致用

  为了调动学生的积极性,培养学生团队合作的精神,本环节我采用小组竞争的方式开展教学,小组讨论并选派代表回答,各组之间取长补短,将课堂教学推向高潮,再次加强学生对向量概念的理解。

  5、课堂小结

  为了了解学生本节课的学习效果,并且将所学做个很好的总结。设置问题:通过本节课的学习你有哪些收获?(可以从各种角度入手)

  【设计意图】通过总结使学生明确本节的学习内容,强化重点,为今后的'学习打下坚定的基础

  6、 布置作业

  出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考的空间.

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动眼观察,动脑思考,层层递进,亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。而最后的实际应用又将激发学生的学习兴趣,带领学生进入对本节课更深一步的思考和研究之中,从而达到知识在课堂以外的延伸。

  以上就是我对本节课的设计和说明,请各位领导,老师批评指正

  高二平面向量知识课件 篇7

  一、 背景分析

  1、学习任务分析

  平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

  本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

  2、学生情况分析

  学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

  二、 教学目标设计

  《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:

  (1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

  (2)体会平面向量的数量积与向量投影的关系。

  (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

  从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

  综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

  1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

  2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

  并能运用性质和运算律进行相关的运算和判断;

  3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

  三、课堂结构设计

  本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

  即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

  四、 教学媒体设计

  和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

  1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

  2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

  高二平面向量知识课件 篇8

  教学目标:

  1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.

  2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.

  3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.

  学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规

  授课类型:新授课

  教学思路:

  一、情景设置:

  如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否

  追到老鼠?(画图)

  结论:猫的速度再快也没用,因为方向错了.

  分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、C B D

  有长短的量

  引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?

  二、新课学习:

  (一)向量的概念:我们把既有大小又有方向的量叫向量

  (二)请同学阅读课本后回答:(可制作成幻灯片)

  1、数量与向量有何区别?

  2、如何表示向量?

  3、有向线段和线段有何区别和联系?分别可以表示向量的什么?

  4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

  5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

  6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

  7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?

  (三)探究学习

  1、数量与向量的区别:

  数量只有大小,是一个代数量,可以进行代数运算、比较大小;

  向量有方向,大小,双重性,不能比较大小.

  2.向量的表示方法:

  ①用有向线段表示;

  ②用字母a、b

  (黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB; ④向量AB的大小――长度称为向量的模,记作|AB|.

  3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.

  向量与有向线段的区别:

  (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;

  (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.

  4、零向量、单位向量概念:

  ①长度为0的向量叫零向量,记作0. 0的方向是任意的

  注意0与0的含义与书写区别.

  ②长度为1个单位长度的向量,叫单位向量. a A(起点) B (终点)

  说明:零向量、单位向量的定义都只是限制了大小.

  5、平行向量定义:

  ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.

  说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.

  6、相等向量定义:

  长度相等且方向相同的向量叫相等向量.

  说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;

  (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..

  向线段的起点无关。

  7、共线向量与平行向量关系:

  平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的。起点无关)。

  说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;

  (2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.

  (四)理解和巩固:

  例1书本86页例1.

  例2判断:

  (1)平行向量是否一定方向相同?(不一定)

  (2)不相等的向量是否一定不平行?(不一定)

  (3)与零向量相等的向量必定是什么向量?(零向量)

  (4)与任意向量都平行的向量是什么向量?(零向量)

  (5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)

  (6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)

  (7)共线向量一定在同一直线上吗?(不一定)

  例3下列命题正确的是( )

  A.a与b共线,b与c共线,则a与c也共线

  B.任意两个相等的非零向量的始点与终点是一平行四边形

  的四顶点

  C.向量a与b不共线,则a与b都是非零向量

  D.有相同起点的两个非零向量不平行

  解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,

  而由零向量与任一向量都

  共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.

  变式一:与向量长度相等的向量有多少个?(11个)

  变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(CB,DO,FE)

  课堂练习:

  1.判断下列命题是否正确,若不正确,请简述理由. ①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形当且仅当AB=DC

  ⑤一个向量方向不确定当且仅当模为0;

  ⑥共线的向量,若起点不同,则终点一定不同.

  解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.

  ②不正确.单位向量模均相等且为1,但方向并不确定.

  ③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相

  2.书本88页练习

  三、小结:

  1、描述向量的两个指标:模和方向.

  2、平行向量不是平面几何中的平行线段的简单类比.

  3、向量的图示,要标上箭头和始点、终点.

  四、课后作业:

  书本88页习题2.1第3、5题

  高二平面向量知识课件 篇9

  一、教学目标:

  1.知识与技能:

  了解平面向量基本定理及其意义, 理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示。

  2.过程与方法:

  让学生经历平面向量基本定理的探索与发现的形成过程,体会由特殊到一般和数形结合的数学思想,初步掌握应用平面向量基本定理分解向量的方法,培养学生分析问题与解决问题的能力。

  3.情感、态度和价值观

  通过对平面向量基本定理的学习,激发学生的学习兴趣,调动学习积极性,增强学生向量的应用意识,并培养学生合作交流的意识及积极探索勇于发现的学习品质.

  二、教学重点:平面向量基本定理.

  三、教学难点:平面向量基本定理的理解与应用.

  四、教学方法:探究发现、讲练结合

  五、授课类型:新授课

  六、教 具:电子白板、黑板和课件

  七、教学过程:

  (一)情境引课,板书课题

  由导弹的发射情境,引出物理中矢量的分解,进而探究我们数学中的向量是不是也可以沿两个不同方向的向量进行分解呢?

  (二)复习铺路,渐进新课

  在共线向量定理的复习中,自然地、渐进地融入到平面向量基本定理的师生互动合作的探究与发现中去,感受着从特殊到一般、分类讨论和数形结合的数学思想碰撞的火花,体验着学习的快乐。

  (三)归纳总结,形成定理

  让学生在发现学习的过程中归纳总结出平面向量基本定理,并给出基底的定义。

  (四)反思定理,解读要点

  反思平面向量基本定理的实质即向量分解,思考基底的不共线、不惟一和非零性及实数对

  的存在性和唯一性。

  (五)跟踪练习,反馈测试

  及时跟踪练习,反馈测试定理的理解程度。

  (六)讲练结合,巩固理解

  即讲即练定理的应用,讲练结合,进一步巩固理解平面向量基本定理。

  (七)夹角概念,顺势得出

  不共线向量的不同方向的位置关系怎么表示,夹角概念顺势得出。然后数形结合,讲清本质:夹角共起点。再结合例题巩固加深。

  (八)课堂小结,画龙点睛

  回顾本节的学习过程,小结学习要点及数学思想方法,老师的“教 ”与学生的“学”浑然一体,一气呵成。

  (九)作业布置,回味思考。

  布置课后作业,检验教学效果。回味思考,更加理解定理的实质。

  高二平面向量知识课件 篇10

  我说课的内容是平面向量的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)数学第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一.教材分析

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二.教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三.教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四.教学过程的设计

  Ⅰ知识引入阶段---提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段---探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

【高二平面向量知识课件】相关文章:

《平面向量》说课稿03-25

高二乙醇课件03-17

高二数学下册课件08-10

高二雷雨教学课件02-26

高二原子晶体课件03-15

海平面之下高二散文11-17

海平面之下高二散文04-23

高二励志班会课件02-28

高二开学班会课件02-28