我要投稿 投诉建议

三角形内角和教学设计

时间:2024-11-13 13:11:01 教学设计 我要投稿

三角形内角和教学设计通用13篇

  作为一位兢兢业业的人民教师,往往需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。那么写教学设计需要注意哪些问题呢?以下是小编为大家收集的三角形内角和教学设计,欢迎阅读与收藏。

三角形内角和教学设计通用13篇

  三角形内角和教学设计 篇1

  教学要求

  1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

  2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  3、培养学生动手动脑及分析推理能力。

  教学重点

  三角形的内角和是180°的规律。

  教学难点

  使学生理解三角形的内角和是180°这一规律。

  教学用具

  每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

  教学过程:

  一、出示预习提纲

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?

  3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

  二、展示汇报交流

  1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

  2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

  3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

  4、指名学生汇报各组度量和计算的结果。你有什么发现?

  5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

  6、刚才我们计算三角形的内角和都是先测量每个角的`度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

  提示学生,可以把三个内角拼成一个角,就只需测量一次了。

  7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

  8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

  9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

  10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

  12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

  13、出示教材85页做一做。让学生试做。

  14、指名汇报怎样列式计算的。两种方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  课后反思:

  对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

  三角形内角和教学设计 篇2

  教学内容:

  北师版小学数学四年级下册《探索与发现(一)—三角形内角和》

  教材分析:

  《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

  学情分析:

  本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的'能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

  教学目标:

  1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

  2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

  3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

  教学重点:

  让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

  教学难点:

  掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

  教学用具:

  表格、课件。

  学具准备:

  各种三角形、剪刀、量角器。

  一、创设情境揭示课题。

  1、复习

  提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

  生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

  2、引入

  三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

  播放课件,提问:它们在争论什么?

  什么是三角形的内角和?(板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题:

  1、你认为谁说得对?你是怎么想的?

  2、你有什么办法可以比较一下这两个三角形的内角和呢?

  学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  (二)探索与发现

  1、初步探索,提出猜想。

  (1)量一量

  ①了解活动要求:(屏幕显示)

  A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

  B、把测量结果记录在表格中,并计算三角形内角和。

  C、讨论:从刚才的测量和计算结果中,你发现了什么?

  (引导生回顾活动要求)

  ②、小组合作。

  ③、汇报交流。

  你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

  (引导学生发现每个三角形的三个内角和都在1800,左右。)

  (2)提出猜想

  刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

  2、动手操作,验证猜想

  这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

  引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)、小组合作,讨论验证方法。

  (2)分组汇报,讨论质疑

  学生可能会出现的方法:

  A、撕拼的方法

  把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

  讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  B、折一折的方法

  把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

  讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

  C提问:还有没有其它的方法?

  3、回顾两种方法,归纳总结,得出结论。

  (1)课件演示:两种方法的展示。

  (2)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?”

  学生一定会高兴地喊:“1800!

  (3)总结方法,齐读结论

  我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  (4)解释测量误差

  为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

  (三)、回顾问题:

  现在你知道这两个三角形谁说得对了吗?(都不对!)

  为什么?请大家一起,自信肯定的告诉我。

  生:因为三角形内角和等于1800,。(齐读)

  三、巩固深化,加深理解。

  1、试一试:数学书28页第3题

  ∠A=180°— 90°—30°

  2、练一练:数学书29页第一题(生独立解决)

  ∠A=180°— 75°— 28°

  3、小法官:数学书29页第二题

  4、拓展创新

  A D G

  B C E F H R

  ABC的内角和是()

  DEF的内角和是()

  GHR的内角和呢?

  小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

  四、回顾课堂,渗透数学方法。

  1、总结:猜想—验证—归纳—应用的数学方法。

  2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

  3、课堂延伸活动:探索——多边形内角和

  板书设计:

  三角形内角和等于1800。

  猜想验证得出结论应用

  三角形内角和教学设计 篇3

  三角形内角和教学设计

  一、教学目标

  1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

  2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

  3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

  教学难点:运用三角形的内角和解决实际问题。

  三、教具、学具准备:

  课件、一副三角尺、几个三角形。学生准备一副三角尺。

  四、教学过程:

  一、创设情境揭示课题。

  师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

  师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类

  师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

  师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。

  师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

  师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

  今天我们就来研究有关三角形内角和的知识。(板书课题)

  二、探索交流,解决问

  (一)、大胆猜想,产生分歧

  师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

  生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

  生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

  生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

  师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

  (二)验证猜想,解决问题

  师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。

  师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

  师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。

  师:那??其他三角形的.内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

  师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

  三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

  生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

  师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

  师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

  师:谁愿意第一个向大家介绍你们组的验证方法?

  组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

  师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

  师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!

  师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

  组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

  (展示:3个角折成了一个平角。)

  师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

  组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度?生:180 °

  师:(出示一个很小的三角形)它呢?生:180 °

  师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

  (生有的答360°,有的180 °。)

  师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

  师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

  生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

  生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

  师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

  师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。

  师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

  三、巩固应用,内化提高

  1、解决问题:

  学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

  四、回顾整理,反思提升

  通过今天的学习,大家有什么收获?

  拓展创新

  小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

  三角形内角和教学设计 篇4

  一、教材内容分析

  三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索。实验。发现。验证三角形内角和是180度。

  二、教学目标(知识,技能,情感态度、价值观)

  知识于技能:让学生通过亲自动手量。剪。拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

  过程与方法:让学生在动手获取知识的过程中,培养学生的`创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想

  情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  三、学习者特征分析

  学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的形成是通过量。算。拼等活动,让学生探索。实验。发现。讨论。推理。归纳出三角形的内角和是180度。

  四、教学策略选择与设计

  1。关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

  2。从学生已有的知识和生活经验出发,让学生通过操作。观察。思考。交流。推理。归等活动,培养学生的学习兴趣,体验数学的价值。

  五、教学环境及资源准备

  教具准备;多媒体课件。一副三角板。

  学具准备:量角器。各种三角形。剪刀等。

  三角形内角和教学设计 篇5

  一、教材依据

  苏教版四年级数学第八册第28~29页

  二、教学方法及思路

  数学学习的价值在于让学生亲身经历知识发生发展的过程。本节课力图带领学生进入这样一个学习过程:利用故事的形式,让学生产生疑问,三角形的内角和是不是180°?接着让学生通过小组合作的方法通过剪或折,得到三角形的三个内角都能凑成一个平角,得出三角形内角和是180°这一规律。通过课件的进一步演示,让学生对结论的形成过程有更系统更清晰的整理,较好的突破了这节课的重、难点部分。在练习设计方面,通过算一算,量一量,选一选,拼一拼,折一折,说一说等多种方式,提高学生解决简单的实际问题的能力。

  三、教学目标

  1、知识目标:让学生通过量、剪、拼、摆、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

  2、能力目标:让学生在学习活动中进一步增强探索的意识,提高合作交流的能力,获得成功的体验,树立学习的信心。

  3、情感目标:让学生体会几何图形内在的结构美,并充分体会到学习数学的快乐。

  四、教学重点

  使学生理解并掌握三角形的内角和是180°。

  五、教学难点

  验证所有三角形的内角之和都是180°。

  六、教学设备

  量角器、正方形纸、剪刀、各类三角形(也包括等边、等腰)、实物投影、多媒体课件

  七、教学过程

  (一)创设情境,导入新课

  1、师谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?

  让学生对了解的有关三角形的知识畅所欲言。

  2、师谈话:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

  教师放课件。

  课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,(它们在争论谁的`内角和大。)

  3、 到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。

  (板书课题:三角形内角和)

  设计意图:一方面借助电教媒体,利用儿童喜闻乐见的故事创设情境,激发学生学习兴趣,另一方面,通过故事中的认知冲突,来激发学生的求知欲。

  (二)自主探究,发现规律

  1、认识什么是三角形的内角和三角形的内角和。

  谈话:我们通常所说的三角尺的角是三角尺的内角,你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  2、探究三角形内角和的特点。

  ①让学生想一想、说一说怎样才能知道三角形的内角和?

  学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行验证。)

  ②小组合作。

  通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

  引导学生推测出三角形的内角和可能都是180°。

  3、 验证推测。

  让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

  (小组合作验证,教师参与其中。)

  4、全班交流,共同发现规律。

  当学生汇报用折拼或剪拼的方法的时候,教师在电脑中根据学生的汇报,分别演示直角三角形、锐角三角形、钝角三角形的折拼和剪拼的过程。

  在学生交流、教师课件演示的过程中,师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

  5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  [设计意图:先提出疑问,再通过学生的动手实践、自主探索与合作交流的方式,一方面调动了学生思维的积极性,另一方面,通过课件的演示,在学生的充分感知的基础上发现三角形的内角和是180°]

  (三)巩固练习,拓展应用

  根据发现的三角形的新知识来解决问题。

  1、教学“试一试”

  出示“试一试”:三角形中,∠1=75°,∠2=39°,∠3=( )?

  学生试做,指名板演。学生可能有下面两种算法:

  ①∠3=180°—75°—39°=66°

  ②∠3=180°—(75°+39)°=66°

  评议板演,教师让学生说说是怎样想的,再让学生用量角器量一量教科书中的∠3。提问:与算出的结果相同吗?

  2、 “想想做做”第1题

  生独立完成,集体订正,并说说解题方法。

  3、“想想做做”第2题

  提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

  4、“想想做做”第3题

  生动手折折看,填空。

  提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

  5、“想想做做”第6题

  生说说自己的想法。

  [设计意图:当学生获得“三角形的内角和是180°”的知识信息后,让学生通过算一算、量一量、拼一拼和折一折,巩固学生对三角形的内角和的认识。]

  引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。

  [设计意图:开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题。]

  (五)课堂作业

  完成“想想做做”第4题和第5题。

  (六)课堂总结

  问:这节课你学到了哪些数学知识?这些知识你是怎样获得的?你还有什么疑问?

  [设计意图:通过交流式的回顾,引导学生对本课学习知识和学习方法进行总结。]

  (七)板书设计

  三角形内角和等于180°

  ①∠3=180°—75°—39°=66°

  ②∠3=180°—(75°+39)°=66°

  三角形内角和教学设计 篇6

  教学目标:

  1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

  2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

  3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

  教学重点:

  知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

  教学难点:

  经历操作活动,推理、归纳出三角形的内角和。

  教学资源:

  多煤体课件,各种三角形,三角板,量角器,剪刀。

  教学活动:

  一、创设情境,导入新课。

  1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?

  2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

  3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

  二、合件交流,操作发现。

  1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

  2.组织学生小组合作:

  请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

  3.组织学生汇报交流:

  ①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的'内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

  4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

  5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

  三、实践应用,拓展延伸。

  1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

  2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

  四、反思总结,自我建构。

  这节课你有什么收获?

  这节课我们就研究到这儿,同学们再见!

  三角形内角和教学设计 篇7

  一、教学目标

  1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

  2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

  3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

  二、教学过程

  (一)创设情境,导入新课

  1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

  (学生畅所欲言。)

  2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

  师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

  3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、认识什么是三角形的内角和。

  师:你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  2、探究三角形内角和的特点。

  ①让学生想一想、说一说怎样才能知道三角形的内角和?

  学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的.,教师就给予肯定,并鼓励他们对自己想到的方法进行)

  ②小组合作。

  通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

  引导学生推测出三角形的内角和可能都是180°。

  3、验证推测。

  让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

  (小组合作验证,教师参与其中。)

  4、全班交流,共同发现规律。

  当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

  学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

  5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  (三)巩固练习,拓展应用

  根据发现的三角形的新知识来解决问题。

  1、完成“试一试”

  让学生独立完成后,集体交流。

  2、游戏:选度数,组三角形。

  请选出三个角的度数来组成一个三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

  3、“想想做做”第1题

  生独立完成,集体订正,并说说解题方法。

  4、“想想做做”第2题

  提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

  5、“想想做做”第3题

  生动手折折看,填空。

  提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

  6、“想想做做”第5题

  生独立完成,说说不同的解题方法。

  7、“想想做做”第6题

  学生说说自己的想法。

  8、思考题

  教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

  出四边形的内角和公式吗?

  (四)课堂总结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

  三教后反思:

  “三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

  (一)创设情景,激发兴趣

  俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

  (二)给学生空间,让他们自主探究

  “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

  (三)以学定教,注重教学的有效性

  新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

  在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。;

  三角形内角和教学设计 篇8

  教学内容:

  教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

  教学目标:

  1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

  2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

  3.培养学生动手动脑及分析推理能力。

  重点难点:

  掌握三角形的内角和是180°。

  教学准备:

  三角形卡片、量角器、直尺。

  导学过程

  一、复习

  1、什么是平角?平角是多少度?

  2、计算角的度数。

  3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

  二、新知

  (设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

  1、读学卡的学习目标、任务目标,做到心里有数。

  2、揭题:课件演示什么是三角形的内角和。

  3、猜想:三角形的内角和是多少度。

  4、验证:

  (1)初证:用一副三角板说明直角三角形的内角和是180°。

  (2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

  (3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

  (4)汇报结论(清楚明白的给小组加优秀10分)

  5、结论:修改板书,把“?”去掉,写“是”。

  6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

  7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

  三、知识运用(课件出示练习题,生解答)

  1、填空

  (1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

  (2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

  (3)等边三角形的3个内角都是( )。

  (4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

  (5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

  2、判断

  (1)一个三角形中最多有两个直角。 ( )

  (2)锐角三角形任意两个内角的和大于90。 ( )

  (3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

  (4)三角形任意两个内角的和都大于第三个内角。 ( )

  (5)直角三角形中的两个锐角的和等于90。 ( )

  四、拓展探究

  根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

  1、小组讨论。2、汇报结果。3、课件提示帮助理解。

  五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

  六、谈谈自己本节课的收获。

  教学反思

  今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

  任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

  如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

  如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的`严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

  本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

  给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

  前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

  总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

  三角形内角和教学设计 篇9

  【设计理念】

  新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

  【教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

  2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习旧知 引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  设计意图:也自然导入新课。

  二、提出问题 引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的`内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

  三、操作验证 形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设: ①量算法 ②剪拼法 ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

  6、形成结论:任意三角形的内角和是180 °。

  设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

  四、应用结论 解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:用今天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测: 三角形的内角和是180°?

  验证: 量 拼

  结论: 任意三角形的内角和是180°

  三角形内角和教学设计 篇10

  教学内容:

  四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

  教学目标:

  1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

  2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

  3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

  教学重点:

  让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

  教学难点:

  探究和验证“三角形内角和等于180°”。

  教学准备:

  学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

  教学过程:

  一、创设情境,产生疑问

  1、理解内角和含义。

  2、故事激趣

  提问:三兄弟围绕什么问题在争吵?你有什么看法?

  二、自主学习,合作探究

  1、提出猜想。

  (1)计算三角板的内角和。

  (2)提出猜想。

  提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

  指出:“三角形的'内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

  引导:需用更多的三角形验证。

  2、进行验证。

  (1)验证教师提供的三角形。

  测量:任意三角形的内角和。

  ①小组合作:用量角器量出信封里不同三角形的内角和。

  ②交流测量结果。

  ③提问:根据测量结果,你能得出什么结论?

  拼一拼:把一个三角形的三个角拼在一起。

  ①思考:除了量,还可以用什么方法验证呢?

  ②同桌合作:尝试把三个内角拼成一个平角。

  ③反馈不同的拼法。

  ④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

  解释误差问题。

  (2)验证学生自己画的三角形。

  学生任意画一个三角形,用自己喜欢的方法去验证。

  交流:自己画的三角形验证出来内角和是1800吗?有谁验证

  出来不是1800的吗?

  提问:你又能得到什么结论?还有怀疑吗?

  3、得出结论。

  指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

  说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

  解决争吵:学生用三角形内角和的知识劝解三兄弟。

  三、巩固应用,深刻感悟

  1、算一算:求三角形中未知角的度数。

  2、拼一拼:用两块相同的三角尺拼成一个三角形。

  思考:拼成的三角形内角和是多少?

  3、画一画:(1)你能画出一个有两个锐角的三角形吗?

  (2)你能画出一个有两个直角的三角形吗?

  (3)你能画出一个有两个钝角的三角形吗?

  四、全课总结,课后延伸

  1、学生自主总结一节课的收获。

  2、介绍帕斯卡。

  3、用三角形拼成四边形、五边形、六边形,引发新的问题。

  三角形内角和教学设计 篇11

  设计思路

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教材分析

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

  因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  多媒体课件、学具。

  教学过程

  一、激趣引入

  (一)认识三角形内角

  师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  生1:三角形是由三条线段围成的图形。

  生2:三角形有三个角,……

  师:请看屏幕(课件演示三条线段围成三角形的过程)。

  师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:只能画长方形。

  师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

  生:想。

  师:那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究新知

  (一)研究特殊三角形的内角和

  师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

  生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

  师:也就是这个三角形各角的度数。它们的'和怎样?

  生:是180°。

  师:你是怎样知道的?

  生:90°+60°+30°=180°。

  师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

  师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

  生:90°+45°+45°=180°。

  师:从刚才两个三角形内角和的计算中,你发现什么?

  生1:这两个三角形的内角和都是180°。

  生2:这两个三角形都是直角三角形,并且是特殊的三角形。

  (二)研究一般三角形内角和

  1、猜一猜。

  师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、验证一般三角形内角和是180°。

  (1)小组合作、进行探究。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

  师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

  (2)小组汇报结果。

  师:请各小组汇报探究结果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)继续探究

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?

  生:把它们剪下来放在一起。

  1、用拼合的方法验证。

  师:很好,请用不同的三角形来验证。

  师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

  2、汇报验证结果。

  师:先验证锐角三角形,我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  3、课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

  三角形内角和教学设计 篇12

  1. 清晰之问引其疑

  提问对学生来说是引发思维的出发点,因此提问应是在学生对某些数学现象、某些数学研究有了一定的感知和认识的基础上进行的。教师提问学生必须有明确的提问目的和清晰的表达,方能促使学生对新知产生疑惑,激发兴趣,形成体验。

  教学片段A:(七下《认识三角形》第一课时)

  (上课铃声响后,师生行礼毕)

  师:同学们,今天我们一起来学习新的知识,请同学们首先回顾下以前所学过的几何图形有哪些?

  生1:学过了三角形、正方形、长方形……

  生2:还有圆、四边形、平行四边形、五边形……

  师:那么大家想一想,我们学过的三角形如何能构成?

  (沉默稍许,一生举手)

  生:三角形两边之和大于第三边(表情不自信,低头小声!)

  师(一怔):噢!这说明了这位同学预习了新课内容,但我问的不是这个意思,我问的是如何构成三角形?(生有议论,但无人举手)

  师(略急):大家请看黑板上的图形(指着三角形三边)这是什么?

  生(齐声):边!

  ……

  师:那么三个内角如何表示呢?

  生:∠A,∠B,∠C

  师:回答正确!有没有同学会用符号记作三角形呢?

  一生举手上黑板书写 ABC

  师:字母有没有顺序要求呢?生(齐声):没有!

  师:请同学们打开补充练习完成第7页第4题。

  生做题,师巡视指导……

  此片段是苏科版七(下)第七章《认识三角形》第一课时新课引入部分。以提问形式进行,该师主要提问了13余次,不能说教师没有组织教学的提问意识,但却有不少设计可以再推敲!概括起来,其提问主要存在的缺憾有两点:“问无据,问不明”!

  有效的提问必须从学生的实际出发,注重学生的年龄特征、知识水平和接受能力。其设计的目的立足于教材内容和学生的“最近发展区”,让学生能通过努力思考建构地认识新知!如果没有这样的问题设计的依据,随心所欲,信口开河,那么我们所设计的问题只是为了问而问,意义甚小!片段中教师开始提问学生回顾小学的旧知意图似乎是在通过回顾图形引入到三角形知识的认识,但由于学生的理解角度和学过的图形较多,回答不免散而耗时,不能及时切入新课,其问题与本节内容相去较远,有“敲边鼓”之嫌!这样的问题设计过多便会冲淡了学生的学习之趣!同样,问题中教师提问学生“三角形边还可以怎么表示?能不能用小写字母表示?”的设计笔者认为学生无人敢答不是无人不知,而是学生的最近发展区带来的对新知的不自信!教师可以这样设计:“三角形的边是线段,线段除了用大写字母可以表示,还可以怎么表示?那么是不是随意的用小写字母表示呢?大家通过预习能不能找到用小写字母表示的特征?”这样的设计虽不能说视为最佳,但其一可以引导学生认识三角形的边是线段,线段可以用小写的字母表示,另则可以促使学生自主去找到用小写字母表示边的特征!符合新课程中要求学生形成学习数学体验的要求!所以精巧之问须有精心准备!明确而有依有据的问题设计要求教师课前必须把握教材,摸清学生知识的基础,把问题设计在学生已有的知识基础上,这样才能不做无凭无据之问!

  2. 多变之问激其趣

  新的知识点形成之后,它还可以发散、深化,使知识得以迁移、发展,从而对学生问题的设计不单一,不固定是激发学生学习兴趣的重要方法!

  多变之问在于(1) 变形式;(2) 多迁移;(3) 悬而不释

  片段B:(《三角形内角和》)

  师:同学们!我们小学学过了三角形的相关知识,请同学们根据你们的所学完成下面的练习!

  (师生共同完成练习)

  师:同学们完成的很好!那么有没有同学能告诉大家你计算角度的依据是什么?

  生:我是根据三角形内角和为360度进行计算的!

  师;回答的很好,这个知识我们小学就知道了,那么今天我们就一起来研究为什么三角形的内角和为360度呢?请同学们分组讨论!

  (生分组热烈讨论,师参与并指导!)

  师:同学们讨论的非常积极!请同学们以小组为单位发表你们讨论的结果!

  生:我们小组是通过动手操作说明三角形内角和为360度的。

  (生上讲台示范)

  师:他们小组将一个三角形三个内角撕下拼成平角说明内角和为360度,是否正确?

  生:正确!

  师:通过撕纸说明是一种直观的感受,大家再想一想有没有其他方法说明呢?

  生:用平行线的性质来说明!

  师(没有评价):请同学们再思考看看!除了这样的.想法有么有其他想法。

  生:我还有一个想法!也是利用平行线性质来说明!

  师:因为课堂时间有限,大家讨论很积极,思路也很多,刚才两位同学展示的完全正确,他们都是借助了平行线的性质进行了说明!当然,有些其他做法的同学,我们课后再继续讨论!

  这个教学片段中教师的问题设计并不是很多,但总体来看还是有可取之处的!这样的设计紧紧围绕了问题设置的目的而展开,才开始的三角形内角和知识的再认识的问题设计不单一和老套,没有“三角形内角和为多少的”开门见山式!而是以习题形式取代了对三角形内角和知识的回顾,让学生再体验中去感受以前所学过的知识点,既复习了旧知,也将知识进行了初步应用。后面几个问题的设计则是将学生的思维进行了迁移,拓展了学生的思路,其中有些地方教师并不给予当即的评价,悬而不释!目的在于引导更多的学生参与进来,促使更多的学生有信心进行思考回答!当然,寻找知识的迁移、发展点,让我们的问题问中有变应注意其实效性和可行性,应从知识的本身出发做适当扩展,切不可以因变而随意迁移知识点,加深知识难度!

  3. 有别之问树其志

  所谓“有别之问”即是我们的问题设计应该考虑学生的不同层次,应考虑不同学生的知识水平和接受能力!对问题的设计应有铺垫,由浅入深,对基础薄弱的学生所提出的问题 要求过低或过高都不能激发学生的创新思维和积极性。因而我们设计问题时要注意合理行,层次性,注重面向全体学生,按班级中上等学生的水平来设计,同时也要顾及学生的个性特点和个体差异,以发挥每个学生的学习兴趣!

  片段C:(平行线判断的说明)

  如图,AD//BC,∠A=∠CAB与DC平行吗?为什么?

  这个问题原题目对于多数同学而言有些难度!因而就需要教师在课前作好问题的设计!比如可将此题的问题设计成如下的问题串:

  (1) 根据AD//BC,同学们能判断哪些角相等?

  (2) 结合∠A=∠C,大家还能得到什么结论?

  (3) 如果∠B=∠C,你能到哪两条线段平行?

  通过这样的问题串的设计并针对问题的层次有区别的进行提问,步步引导学生对题目进行分析!这样,多数学生能从自己对问题的理解出发,一个问题接一个问题去思考!调动了学生学习的兴趣!

  三角形内角和教学设计 篇13

  学习目标:

  1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

  4.能应用三角形内角和的性质解决一些简单的问题。

  教具、学具准备:

  课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。

  教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

  教学过程:

  一、谈话导入

  猜谜语:形状似座山,稳定性能坚

  三竿首尾连,学问不简单

  (打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

  师:就这么简单的一个三角形我们就得出了那么多的知识,你们

  说数学知识神气不神奇?

  今天我们还要继续研究三角形的新知识。

  二、创设情境,引出课题,以疑激思

  师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

  师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

  师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

  生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

  生3:当然是大三角形的内角和大了。

  生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:

  三角形的内角和)

  三、动手操作,探究问题,以动启思

  1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。

  师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定

  2、小组合作探究:

  师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的'报告”。

  (1)、小组合作

  ,讨论验证方法(2)汇报验证方法、结果

  师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

  样?

  方法一:

  生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

  师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

  师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

  生:不管什么三角形三个角都能拼成一个平角。

  师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

  方法二:

  生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

  师:请这位同学折来给大家看看。

  生:3个角折成了一个平角。

  师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

  师:说得真清楚。

  方法三:

  学生C:测量角的度数,再加起来。(填表)

  师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

  问:你们发现了什么?

  小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

  3、小结:

  师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

  (出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

  四、自主练习,解决问题:

  师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。

  60。

  30。

  90。

  (2)42。

  54。

  58。

  80。

  2、第二关:庐山真面目:求三角形中一个未知角的度数。

  3、第三关:解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、第四关:变变变(拓展练习)

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。

  五、课堂总结

  帕斯卡法是国著名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!

  帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

  且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

  帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

【三角形内角和教学设计】相关文章:

《三角形的内角和》教学设计12-22

三角形的内角和教学设计07-13

三角形内角和教学设计07-25

三角形的内角和的教学设计09-01

《三角形内角和》教学设计10-01

《三角形内角和》的教学设计10-27

【精华】三角形内角和教学设计09-09

【集合】三角形的内角和教学设计07-31

三角形内角和教学设计优秀09-22

《三角形内角和》教学设计(精)10-01