- 《对数函数》教学设计 推荐度:
- 相关推荐
对数函数教学设计
作为一位兢兢业业的人民教师,编写教学设计是必不可少的,教学设计是实现教学目标的计划性和决策性活动。那么教学设计应该怎么写才合适呢?下面是小编帮大家整理的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计1
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征函数性质
a>10<a<1a>10<a<1
向y轴正负方向无限延伸函数的值域为R+
图象关于原点和y轴不对称非奇非偶函数
函数图象都在y轴右侧函数的定义域为R
函数图象都过定点(1,0)
自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 , , 的大小:
2.求下列各式中的x的值
(1)
演绎推理导学案
2.1.2 演绎推理
学习目标
1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;
2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.
学习过程
一、前准备
复习1:归纳推理是由 到 的推理.
类比推理是由 到 的推理.
复习2:合情推理的结论 .
二、新导学
※ 学习探究
探究任务一:演绎推理的概念
问题:观察下列例子有什么特点?
(1)所有的金属都能够导电,铜是金属,所以 ;
(2)一切奇数都不能被2整除,20xx是奇数,所以 ;
(3)三角函数都是周期函数, 是三角函数,所以 ;
(4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .
新知:演绎推理是
的推理.简言之,演绎推理是由 到 的推理.
探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?
所有的金属都导电 铜是金属 铜能导电
已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断
大前提 小前提 结论
新知:“三段论”是演绎推理的一般模式:
大前提—— ;
小前提—— ;
结论—— .
新知:用集合知识说明“三段论”:
大前提:
小前提:
结 论:
试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.
※ 典型例题
例1 命题:等腰三角形的两底角相等
已知:
求证:
证明:
把上面推理写成三段论形式:
变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD
例2求证:当a>1时,有
动手试试:1证明函数 的值恒为正数。
2 下面的推理形式正确吗?推理的结论正确吗?为什么?
所有边长相等的凸多边形是正多边形,(大前提)
菱形是所有边长都相等的凸多边形, (小前提)
菱形是正多边形. (结 论)
小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.
三、总结提升
※ 学习小结
1. 合情推理 ;结论不一定正确.
2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.
3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的`,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”
结论显然是错误的,是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为
A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
4.归纳推理是由 到 的推理;
类比推理是由 到 的推理;
演绎推理是由 到 的推理.
后作业
1. 运用完全归纳推理证明:函数 的值恒为正数。
直观图
总 课 题空间几何体总课时第4课时
分 课 题直观图画法分课时第4课时
目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.
重点难点用斜二侧画法画图.
引入新课
1.平行投影、中心投影、斜投影、正投影的有关概念.
2.空间图形的直观图的画法——斜二侧画法:
规则:(1)____________________________________________________________.
(2)____________________________________________________________.
(3)____________________________________________________________.
(4)____________________________________________________________.
例题剖析
例1 画水平放置的正三角形的直观图.
例2 画棱长为 的正方体的直观图.
巩固练习
1.在下列图形中,采用中心投影(透视)画法的是__________.
2.用斜二测画法画出下列水平放置的图形的直观图.
3.根据下面的三视图,画出相应的空间图形的直观图.
课堂小结
通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.
对数函数教学设计2
(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.
一、教材分析
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:
(1)知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。
(2)过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。
(3)情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在与两种情况函数值的不同变化.
二、教法分析
本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。
三、学法分析
本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.
四、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。
五、教学过程
根据新课标我将本节课分为下列五个环节:创设情境,引入新课;探究新知,加深理解;讲解例题,强化应用;归纳小结,巩固双基;布置作业,提高升华。
(一)创设情境,引入新课
本节课我是从在指数函数一节曾经做过的一道习题入手的。这样以旧代新逐层递近,不仅使学生易懂而且还体现了指对函数间的密切关系。我的引题是这样的:引题:一个细胞由一个分裂成两个,两个分裂成四个??依此类推,(1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。(2)256个细胞是这个细胞经过几次分裂得到的?那么要得到1万,10万?个第一问学生很容易得出是指数函数:y=2x。再看第二问,通过思考学生分析出这是个已知细胞个数求分裂次数的问题即:已知y求x的问题,即:x=log2y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了方便学生理解,可以借助指数函数图像加以解释。得出x=log2y是一个函数,但它又和我们平时所见过的函数形式上不一样,我们习惯上用x来表示自变量,y来表示函数,所以可将它改写成y=log2x,这样的函数称为对数函数。这便引出了本节课的课题。
这样设计不仅学生容易接受而且虽然在过程中没有用反函数的概念,但却体现了求指数函数反函数的过程,这为后面学习反函数的概念做了铺垫。由于有了之前学习指数函数的基础,学生很容易就可归纳总结出:对数函数的一般形式:y=logax(a>0且a≠1),并求出定义域(0,+∞)。由于对数函数是形式定义,所以让学生记住这个形式是由为重要的,可以让学生观察解析式的特点并可归纳总结出三条:
1、对数符号前系数为1;
2、底数是不为0的正常数;
3、真数是一个自变量x的形式。为了加深学生的记忆,我这里安排了一道辨析题:判断下列函数是否为对数函数:
这样学生就对对数函数的概念有了更准确的认知与理解。
(二)探究新知,加强理解
得到了对数函数的'解析式,学生自然而然就会想到该研究它的图像了。我的想法是这样的:一方面描点法画图是学生需要熟练掌握的一类重要的画图方法,而且学生对自己画出的图像和归纳总结的知识记忆会更加深刻,所以我决定将课堂交给学生让他们自主探究,然后同学间互相讨论,并根据图像归纳出对数函数的性质。另一方面,研究对数函数图像主要是研究底数a对图像的影响,以及底数互为倒数的两个函数图像间的关系。所以我将所研究的问题分为以下3组:第一组:和第二组:和第三组:和。并且我将全班学生每6人分为一组,由组长负责分配,每个学习小组要把这3组图都画出来,画完后,组内讨论各组图像间的关系或特点并归纳总结出来。这样做的好处是:
1、可以大大节省画图时间,提高课堂效率;
2、这样相当于全班每一位同学,都对对数函数的这三组图像有了初步的感性认识,3、培养了学生团结协作,归纳总结及交流的能力。讨论完后,让几个组的学生代表将本组所画图像及归纳总结的规律用实物投影一一展示,教师将学生归纳总结出的共性的规律提炼出来,并问学生:这是通过具体的对数函数总结出的规律。那么是否适用于一般的情况呢?这时就需要教师用多媒体演示来辅助教学了。我是用几何画板做了一个底数a变化时图像也随着变化的课件。通过底数a的变化,会出现不同的对数函数图像,学生会发现无论a怎样变化,图像的特点与由特殊函数总结出的规律一样,所以可以由特殊推出一般结论。还可以得出对数函数图像其实分为以下两类:a>1和0
a>1 0
图
像
定义域
(0,+∞)值域
R单调性
在上为增函数
在上为减函数奇偶性
非奇非偶函数
至此,对数函数的图像及性质就由教师引导,学生自主探究归纳总结出来。下面就是应用性质来解题了。
(三)讲解例题,强化应用在这一部分我安排了2道例题。例1:求下列函数的定义域:例2:比较下列各组数中的两个值的大小:例1是对对数型函数定义域的考查。目的是让学生掌握形如:的函数求定义域只需f(x)>0即可。例2是比较两个对数值大小的问题。前两道题是直接利用函数单调性来比较,第3道题是为了让学生注意当底数不确定时,要有分类讨论的意识,第4道题是更上一层,底数真数都不相同时应如何处理,这四道题是层层深入,逐渐加深难度,通过这种变式教学可充分调动学生的解题积极性,调动他们的思维。
(四)归纳小结,巩固双基
归纳小结是巩固新知不可缺少的环节。本节课我让学生自主归纳,目的是培养学生的概括能力、语言表达能力,还能使学生将本节课的知识做简要的回顾。然后教师再将学生的发言做最后的小节。可以总结为:
在知识方面:(1)学习了对数函数的图像及其性质;(2)会应用对数函数的知识求定义域;(3)会利用对数函数单调性比较两个对数的大小。
思想方法方面:体会了类比、由特殊到一般、分类与整合、分类讨论的思想方法。
(五)布置作业,提高升华
最后一个环节是布置作业,这是一节课提高升华的过程,也是检验学生是否掌握了本节课的知识和思想方法的关键。本节课我安排了两个作业。必做题和思考题,其中思考题是让学生思考既然本节课我们一直是通过指数函数来研究对数函数的,那么他们之间有怎样的关系呢?
通过以上各个环节,不仅学生掌握了对数函数的定义与性质,还调动了学生自主探究与人合作的学习积极性,很好地完成了教学任务。
对数函数教学设计3
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标
1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能。
2、通过对数函数的'学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.。
3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
五、重点与难点
重点:
(1)对数函数的概念;
(2)对数函数与指数函数的相互转化。
难点:
(1)对数函数概念的理解;
(2)对数函数性质的理解。
六、过程设计
(一)复习导入
(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何?
学生回答,并用课件展示指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二)讲授新课
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
对数函数教学设计4
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数函与指数函数的学习,学生已多次体会了对立统
一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。教具及软件运行环境说明教具采用多媒体,黑板等形式展开
信息技术设备设置:通过借助计算机多媒体呈现指数函数与对数函数图像应用环境及软件的说明:软件为在windows下运行的matlab7.0
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,利用几何作图软件运行各种指数函数及对数函数,通过比较/类比等方法使学生对对数函数的认识更加深刻。教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标
1、知识与技能,理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能。
2、过程与方法,通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一。3、情感态度与价值观,通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的科学意识。
五、重点与难点
重点:
(1)对数函数的概念;
(2)对数函数的性质。
难点:
(1)对数函数与指数函数之间的关系。
六、过程设计及师生互动
(一)复习导入
(1)复习提问:什么是指数函数?指数函数的图象和性质如何?
学生回答,并用课件展示指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二)讲授新课
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函
数
y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的.图象。教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
h(x)log2x,f(x)log3x
方法一(描点法)首先列出x,y(q(x)logx,g(x)logx)
1123值的对应表,因为对数函数的定义域为x>0,因此可取x=···,1,2,4,8···,请计算对应的y然后在坐标系内描点、画出它们的图象。
方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax。的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=log x的图象,再演示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和
性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。
(三)巩固练习p42—p45
(四)纳小结强化思想
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。
七、教学评价方案
课堂教学是教学过程的中心环节,是教师和学生进行教学活动的主要形式,为了促进课堂教学改革,提高课堂教学质量,特制定本课堂教学评价方案:
(1)、教学目标评价
教师能针对所教内容,结合《课程标准》科学、准确地设计教学目标,做到:
1、目标明确,符合学生实际。目标的设置不可过高或过低。
2、“三维目标”全面、具体、适度,有可操作性,并能使知识目标,能力目标、情感、态度、价值观目标有机相融,和谐统一。
量化评价标准每项5分,总计10分。
(2)、教学内容评价
1、教师能准确把握所教学科内容的重点、难点,教授内容正确。
2、教学内容紧密联系学生的生活实际,激发学生去积极思维。
3、教师能从教学实际出发,转变教材观念,对教材进行科学有效的整合,以促进学生的学习,不唯教材,创新适用教材。
量化评价标准:第1、2项各4分,第3项2分,总计10分。
(3)、教师行为评价
1、课堂上教师作为学生学习的组织者,是否能够有效地组织学生进行学习;作为学生学习的指导者,是否对学生的学习指导得有法、到位。培养了学生良好的学习习惯;是否创造了生动有趣的教学情境来诱发学生学习的主动性;作为学生学习的引导着,是否成为学生和课本之间的桥梁纽带,在教学活动中,发挥了自己的聪明才智和应有的作用;作为学生学习的合作者,是否能和学生一起学习,探究、倾听、交流。
2、教师能以学生为主体,重视知识的形成过程,重视学生学习方法的培养,重视学生的自学能力、实践能力,创新能力的发展。
3、课堂上能营造宽松、民主、平等的学习氛围,教态自然亲切,对学生学习的评价、恰当、具体、有激励性。
4、能够根据教材的重点、难点之处,精心设计问题,所提出的问题能针对不同层次的学生,问题的提出,恰到好处。能启发学生思考,促进学生知识的构建,并能给学生留有充分思考的时间,同时注重学生的“问题”意识,引导学生主动提出问题。
5、根据教学内容和学生实际,恰当地选择教学手段,合理运用教学媒体。、课堂上,教师的讲解语言准确简练,示范操作规范,板书合理适用,教学有一定的风格和艺术性。
量化评比标准:第1项8分;第2项5分;第3项2分;第4项4分;第5、6项各3分,总计25分。
(4)、学生行为评价
主要针对学生在课上的学习状态来评价。
1、看学生的学习状况,学生学习的主动性是否被激起,能积极地以多种感观参与到学习活动之中,精神振奋,有强烈的求知欲望。
2、看学生的参与状态,学生参与学习活动中的数量、广度和深度是衡量主体地位发挥的主要标志,学生要全员参与,有效参与。
3、看学生的学习方式。是否由被动学习变为主动学习,是否由个体学习到主动合作学习;是否由接受性学习变为探究性学习。
4、看学生在自主、合作、探究学习上的表现。学生在学习过程中,是否全身心地投入、是否发现问题,提出问题,积极解决问题,是否敢于质疑,善于合作、主动探究并有实效,是否围绕某一问题彼此间能交流、讨论、倾听,提出有效建议。
5、看学生学习的体验与收获。学生在学习过程中,90%以上的学生能够相互交流知识、交流、体会,交流情感由自悟——觉悟——感悟——醒悟,在获取丰富知识的同时形成了一定的学习能力。
量化评价评价标准:第1项8分;第2项3分;第3项6分;第4项8分;第5项2分;第6项8分,总计35分。
(5)、教学效果评价
1、看教学目标达成度如何,教师是否高度关注学生的知识与能力、过程与方法、情感态度价值观的全面发展。
2、看教学效果的满意度,学生在教师的指导下,积极主动参与,90%以上的学生掌握了有效的学习方法,获得了知识,发展了能力,有积极的情感体验。
3、看课堂训练题设计,检测效果好。
量化评价标准:第1项4分;第2项7分;第3项4分。总计15分。
(6)、教学特色评价
教师在教学方式、方法上,知识的生成点上,教学机智与智慧上的闪光点,有不同寻常之处。
评价标准:具备上述中的某一点或几点评价。
分数:2———5分。
八、教学反思
在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的衔接及联系,形成知识框架,其次要了解学生认知规律,知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系。
1、要有明确的教学目标
2、要能突出重点、化解难点
3、要善于运用现代化教学手段
4、根据具体内容,选择恰当的教学方法
5、关爱学生,及时鼓励
6、充分发挥学生主体作用,调动学生的学习积极性
【对数函数教学设计】相关文章:
《对数函数》说课稿范文(通用5篇)01-09
设计校园教学设计04-14
装帧设计教学设计04-19
教学设计08-23
教学设计07-13
经典教学设计06-22
学与问教学设计搭配的学问教学设计11-19
英语教学设计 英语教学设计09-02
《山雨》的教学设计09-16
左右教学设计09-19