我要投稿 投诉建议

圆的面积教学设计

时间:2024-08-28 15:10:16 教学设计 我要投稿

圆的面积教学设计锦集15篇

  作为一位无私奉献的人民教师,时常需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。一份好的教学设计是什么样子的呢?下面是小编帮大家整理的圆的面积教学设计,欢迎阅读与收藏。

圆的面积教学设计锦集15篇

圆的面积教学设计1

  教学目标:

  1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

  2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

  3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:能正确、熟练地进行圆周长和面积的计算。

  教学难点:从探究活动过程中去发现圆与正方形之间的关系。

  教学准备:课件,学具。

  教学过程:

  一、复习旧知,梳理体系

  直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

  教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

  小组合作,让同学们把所学的知识整理一下,然后进行汇报。

  汇报交流,课件出示相关内容。

  (1)圆的认识:

  圆心O:决定圆的位置;

  直径d:决定圆的大小;

  半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

  圆是轴对称图形,有无数条对称轴。

  (2)圆的周长:

  围成圆的曲线的长度叫圆的周长。

  圆周率:周长与直径的比,是个无限不循环小数。

  圆周长的计算:。

  (3)圆的面积:

  由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

  圆面积计算:。

  圆环的面积:。

  【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

  二、基本练习,整合知识

  教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

  1.说说下面各题的最简整数比:

  (1)一个圆的半径和直径的比是多少?(1:2)

  (2)一个圆的周长和直径的比是多少?(:1)

  (3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)

  周长的比是多少?(2:3)

  面积的比是多少?(4:9)

  【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

  2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)

  (1)这个公园的围墙有多长?

  教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的'周长是6.28 km。)

  (2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)

  (3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

  (4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

  【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

  三、探究学习,培养能力

  1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

  (1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

  (2)剪完圆后,哪张白铁皮剩下的废料多些?

  教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

  (3)根据以上的计算,你发现了什么?

  【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

  四、回顾总结,交流收获

  教师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

圆的面积教学设计2

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:

  利用圆面积计算公式正确计算圆的面积。

  教学难点:

  圆面积计算公式的推导。

  教具准备:

  等分圆教具。

  学具准备:

  分成十六等分的圆形纸片。

  教学过程:

  一.谈话导入新课

  同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。

  二.游戏激趣,理解圆的面积的概念。

  师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?

  生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。

  师:现在大家知道男生为什么涂得慢呢?

  生:男同学涂的面积大。

  三.探究合作,推导圆的面积公式

  1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?

  生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?

  2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的`关系?请看老师给出的三个问题。齐读问题明确要求。

  3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。

  四.巩固新知,实践运用

  1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。

  2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?

  五.总结

  1、这节课你们有什么收获?

  2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。

圆的面积教学设计3

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的`什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

圆的面积教学设计4

  教学目标:

  结合具体情境,经历运用圆的面积公式解决实际问题的过程。

  能灵活运用圆的面积公式解决生活中已知直径求面积的简单实际问题。

  感受数学与生活的密切联系,培养学生的应用意识。

  课前准备:一个直径30厘米的水桶。

  教学过程:

  一、创设情境

  师生谈话,交流在什么地方见过什么形状的草坪。

  师:同学们,随着社会和经济的发展,人们越来越注意美化环境,许多地方都种植了草坪,谁来说说你在什么地方见到过什么形状的草坪呢?

  指名回答,给学生充分交流的机会。

  二、草坪面积

  教师口述问题,并板书出相关数据。

  师:许多活动场所都有草坪,有些建筑前也有草坪,下面我们就来解决一个关于建草坪的问题。某公司要在办公大楼前建一个圆形草坪,计划草坪直径为11米。

  板书:圆形草坪直径11米

  提出书中的问题,让学生讨论一下:草皮和草坪面积的关系,再自己计算。师:现在的问题是需要多少平方米草皮呢?请大家先想一想:草皮和草坪的面积有什么关系?

  生:草皮的面积就是这个圆形草坪的面积。

  师:对,已知圆的半径求面积,大家已经比较熟悉了,那么知道了这个圆形草坪的直径,怎么求它的面积呢?请同学们试着算一算,得数保留整数。

  学生试算,教师巡视,了解学生计算情况。

  全班交流计算的过程和方法。注:如果有的学生分两步,先算出半径,再计算面积要给予肯定。列综合算式计算时,重点说明掌握()2的计算顺序。师:谁来说一说你是怎么算的,结果是多少?

  生1:我先求出圆形草坪的半径11÷2=5.5(米),再用3.14×5.52≈95(平方米),需要约95平方米草皮。

  教师板书:11÷2=5.5(米)

  14×5.52≈95(平方米)

  生2:我列的是综合算式,因为r=,圆的面积S=πr2,所以圆面积计算公式还可以写成S=π( )2,列式为3.14×()2=3.14×30.25≈95(平方米),需要约95平方米草皮。

  如果学生没有出现第二种列式方法,教师参与交流,并特别说明。

  师:同学们注意,在综合算式里的()2要先算小括号里的,求出商后再平方。边说边板书:3.14×()2=3.14×30.25≈95(平方米)

  师:同学们利用圆面积公式解决草坪面积的问题。下面,我们再来解决一个实际问题。

  三、水桶盖面积

  教师拿出直径30厘米的水桶,先让学生猜测桶口的直径,再提出加木盖,以及木盖比桶口直径大10厘米的事情,提出计算水缸盖面积的问题,鼓励学生试算。

  出示水桶。

  师:这个水桶大家都非常熟悉,猜一猜这个水桶桶口的直径是多少?

  学生猜,猜中给予表扬,猜不中,教师告诉,并板书出来:

  水桶桶口直径30厘米。

  师:现在要给这个水桶加一个大一点儿的木盖。木盖的直径比桶口的直径大10厘米。

  板书:木盖直径大10厘米。

  师:你们能算出这个木盖的面积吗?试一试!

  学生试做,教师巡视,个别指导。

  全班交流。重点说说计算的方法和结果。师:谁来说一说你是怎么算的,结果是多少?

  生:先计算出木盖的直径,用30+10=40(厘米),再计算木盖的面积3.14×()2=3.14×202=3.14

  ×400=1256(平方厘米)

  教师板书出算式。

  四、归纳整理

  让学生看90页的两个问题,并找一找有什么共同点?

  师:请同学们打开书90页,课本上的两个问题,就是我们刚才解决的问题。自己读一读,看一看,这两个问题有什么共同点?

  学生读书。

  分别讨论:两个问题有什么共同点?已知直径求圆的面积,先算什么,再怎样计算?使学生知道:要先算出半径,再用圆面积公式计算圆的面积。师:谁来说一说这两个问题有什么共同点?

  学生可能会说:

  都利用圆的面积公式计算。

  都是已知直径求面积。

  都要先算出半径,再求面积。

  师:已知直径求面积,要先算什么,再怎样计算?

  生:要先算出半径,再利用圆面积公式计算。

  五、课堂练习

  “练一练”第1题,让学生独立完成。

  师:看来同学们已经掌握了已知直径求圆面积的计算方法。下面我们打开课本第91页,看“练一练”中的`第1题,自己读题,并解答。

  学生独立完成,教师巡视。

  师:谁来说一说你的做法,这个标志牌的面积是多少?

  生1:我先求出这个标志牌的半径40÷2=20(厘米),再计算标志牌的面积:3.14×202=1256(平方厘米)

  生2:我是用综合算式计算的。标志牌的面积是3.14×()2=1256(平方厘米)

  “练一练”第2、3题,让学生自主计算,然后全班订正。师:我们继续看第2题。自己计算的几个圆的面积。看谁计算的都正确。

  师:第3题是三个不同直径的圆,请同学们计算出它们的面积。

  学生算完后,交流。

  练一练第4题,课外实践性作业。师:第4题,请同学们回家后,测量、计算并填表。

圆的面积教学设计5

  教学内容:

  义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

  教学目标:

  知识与技能:

  让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

  过程与方法:

  (1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

  (2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

  情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

  教学重点:

  推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

  教学难点:

  引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

  教具准备:

  多媒体课件,圆片等。

  教学方法:

  自主探究法

  教学过程:

  一.以旧引新、导入新课

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下三角形的面积公式是怎样推导的?

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的`图形来推导面积公式的。(板书:转化)

  5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

  二、动手实践、探索新知

  1、补充感知、理解意义

  (1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

  (2)同学们再用手指一指自己带来的圆的面积。

  (3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

  2、比较猜测、探明方向

  (1)提问:猜猜圆面积的大小与什么有关?

  (2)下面我们来动手验证一下是否与半径有关:

  ①你们想通过什么方法来推导圆的面积计算公式?

  ②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

  (3)活动要求:折一折手中的圆片能折出什么图形?

  (4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

  ①圆和(近似的)长方形有什么关系?(形状变,面积相等)

  ②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

  (教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

  把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

  小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

圆的面积教学设计6

  一、教学目标

  1、知识与技能

  (1)知道圆的面积公式推导过程;

  (2)会用圆的面积公式计算圆的面积;

  2、过程与方法

  经历动手操作讨论等探索圆的面积公式的过程;

  3、情感态度与价值观

  积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数

  学思想。

  二、教学重点:

  圆的面积的计算

  三、教学难点:

  推导圆的公式的过程;

  教具准备:多媒体课件、圆片、胶水、剪刀

  四、教学过程:

  (一)、创设情境,导入新知

  1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)

  2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)

  3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的周长和面积。

  4、设疑:那么圆的面积怎样求呢?

  5、教师让学生说出以前学过的平行四边行图形的'面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。

  6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?

  (1)、设疑导入,激起学生学习的兴趣.

  (2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.

  (二 )合作探究

  把圆形转化成以前学过的图形探究圆的面积公式

  师:同学们开动脑筋,小组合作看能把圆转化成什么图形?

  (1) 学生动手操作;

  (2) 交流演示各组拼出的图形。

  (3)教师用课件演示。

  教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=

  问: 那么要求圆的面积必须知道什么条件?

  (三)解决问题

  (一)、已知圆的半径,求圆的面积

  例1、一个圆形花坛的半径是3m,它的面积是多少平方米?

  (二)、已知圆的直径,求圆的面积

  例2、圆形花坛的直径的20 m,它的面积是多少平方米?

  (三)、已知圆的周长,求圆的面积

  例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?

  四 巩固练习

  1、判断对错:

  (1)直径相等的两个圆,面积不一定相等。。 ( )

  (2)两个圆的周长相等,面积也一定相等。 ( )

  (3)圆的半径越大,圆所占的面积也越大。 ( )

  2、根据下面所给的条件,求圆的面积。

  (1)半径3分米

  (2)直径20厘米

  五、知识拓展

  在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?

  六、总结:学生谈收获

  反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。

圆的面积教学设计7

  教学内容:

  新人教版数学六年级上册第67—68页,圆的面积。

  教学目标:

  1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

  2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

  3、培养认真观察的习惯和自主探究、合作交流的能力。

  教学重难点:

  1、运用圆的面积计算公式解决实际问题。

  2、理解圆的面积计算公式的推导过程。

  教学准备:多媒体课件

  教学方法:自主探究,合作交流

  教学过程:

  一、小测验:

  1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。

  2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。

  二、问题引入

  1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

  2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

  3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

  三、探索新知

  (一)复习,平面图形面积的计算方法。

  (二)探索圆面积的计算方法

  1、我们一起来推导圆的面积公式吧!

  2、利用多媒体课件展示圆的面积公式的推导过程。

  (1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

  (2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

  3、在图形的拼凑与转化中,同时观察与思考以下问题。

  a、拼凑中,圆在转化成什么图形?

  b、长方形的长与圆的.周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

  4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)

  因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

  如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

  5、学生齐读公式

  S= πr2

  教师强调r2= r × r(表示2个r相乘)

  (三)应用公式

  一个圆的半径是4厘米。它的面积是多少平方厘米?

  思考:

  1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

  2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

  3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

  例

  1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

  2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

  3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

  4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

  (四)知识应用

  1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

  课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

  2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

  3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

  四、课堂总结:这节课,你有哪些收获?

  说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

  五、作业布置:

  教材第71页,练习十五,第1题~第4题。

圆的面积教学设计8

  教学目标

  1.知识与技能

  ⑴使学生能根据具体条件,比较灵活地计算圆的面积。

  ⑵使学生认识圆环,学会求圆环面积的计算方法。

  2.过程与方法

  培养学生主动探究、合作交流、解决问题的方法和能力。

  3.情感态度与价值观

  培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。

  教学重点、难点

  求圆环面积的计算方法。

  教学过程

  一、情景启发,明确目标

  1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积

  简单介绍圆环的形成。

  2.课件展示:生活中的圆环,感受生活美。

  3.复习:圆的面积怎样计算呢?

  (1)、已知圆的半径为2cm,求圆的面积。

  (2)、已知圆的直径为6cm,求圆的面积。

  4.简单介绍圆环的相关名称及关系:

  5.请找出下面圆环的内圆半径(r)或外圆半径(R):

  二、合作探究,达成目标

  大家动笔算一算。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的.面积是多少?

  圆环面积=外圆面-内圆面积

  3.14×62 - 3.14×22 3.14×(62 – 22)

  = 3.14×36 - 3.14×4 = 3.14×(36 – 4)

  = 113.04 – 12.56 = 3.14×32

  = 100.48(cm2)= 100.48(cm2)

  答:它的面积是100.48cm2.

  比较、分享。求环形的面积,你喜欢那种方法?

  S环=πR2-πr2 S环=π(R2-r2)

  三、变式练习,检测目标

  1.填空:

  2.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其它地方是草坪。草坪的占地面积是多少?

  3.14×(50÷2)2-3.14×(10÷2)2

  =3.14×252-3.14×52

  =3.14×625-3.14×25

  =1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]

  =1884(m2)= 3.14×[252-52]

  = 3.14×[625-25]

  = 3.14×600

  =1884(m2)

  答:草坪的占地面积是1884m2.

  3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?

  外圆半径:1+3=4(m)

  环形面积:3.14×(4-3)

  =3.14×(16-9)

  =3.14×7

  =21.98(m)

  答:甬路的占地面积是21.98m2.

  4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积

  3.14×[(18.84÷3.14÷2)2-(4÷2)2]

  =3.14×[32-22]

  =3.14×[9—4]

  =3.14×5

  =15.7(cm2)

  答:环形的面积是15.7cm2。

  四、评讲总结,升华目标

  这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。

  1、什么样的图形是圆环。

  2、怎样计算圆环的面积。

  五、课堂达标:解决问题

  1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?

  2.天安门广场前面有一个大型喷泉,喷泉的半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元

  外圆半径:4+3=7(m)

  环形面积:3.14×(7-3)

  =3.14×(49-9)

  =3.14×40

  =125.6(m)

  答:鲜花所占的面积有125.6m 。

  3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)

  (1)、大半圆的面积

  3.14×[(2+4)÷2]2÷2

  =3.14×9÷2

  =14.13(cm2)

  (3)、小半圆的面积

  3.14×(2÷2)2÷2

  =3.14×1÷2

  =1.57(cm2)

  答:阴影的面积是6.28cm2.

  六、布置作业

  1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?

  2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。

  3、计算下图涂色部分的面积。(单位:厘米)

  七、课后反思

  1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。

  2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。

圆的面积教学设计9

  【教学目标】

  1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  1.CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  3.探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  4.推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,谁能首先告诉老师,这个长方形的宽是多少?

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的'面积应该是多少?那圆的面积呢?

  二、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  2.完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

  三、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  四、课堂作业。

圆的面积教学设计10

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的.图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教学设计11

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点:圆面积计算

  教学难点:公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π 9.42÷π 12.56÷π

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:

  再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr

  2 3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的'面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)

  教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr

  教学反思

  圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:

  一、从圆的周长到圆的面积体验其中不同

  本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。

  四、引导学生主动参与知识的形成过程。

  五、存在和改进的地方有:

  1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;

  2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!

圆的面积教学设计12

  一、教材分析

  本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习关于平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

  二、学情分析

  学生已经有了一些平面图形面积计算的'经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

  三、教学目标

  知识与技能:

  1.理解圆的面积的概念。

  2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

  四、过程与方法:

  经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

  五、情感态度价值观:

  感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  六、教学重点和难点

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

  教学难点:

  理解圆的面积公式的推导过程。

  七、教学准备:

  圆片、课件。

圆的面积教学设计13

  教学目标:

  1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

  3、通过小组会议交流,培养学生的合作精神和创新意识。

  教学重点:

  推导出圆的面积公式及其应用。

  教学难点:

  圆与转化后的图形的联系。

  教具、学具:

  剪刀、图片,圆片4等份……64等份的拼图对比挂图。

  教学过程:

  1、以前我们学过哪些平面图形的面积?

  2、长方形的面积怎样计算?

  3、回忆一下平面四边形的面积公式是怎样推导的`?(小黑板出示推导图形及公式)

  4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

  5、转化后的图形与原来的图形面积相等吗?(板书:等积)

  6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)

  7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

圆的面积教学设计14

  一、教学目标:

  1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

  二、教学重点:

  圆的面积公式的推导及应用公式计算。

  三、教学难点:

  圆面积公式的推导。

  四、教学关键:

  转化前后各部分间的对应关系。

  教学过程

  一、导入新课:

  提出问题:

  在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?

  请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)

  思考:

  要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)

  生读,教师板书:圆的面积

  大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?

  二、探索新知:

  (一)、先自学课本,小组探讨如下两个问题:(电脑出示)

  1、在推导的过程中你发现圆的什么变了?(板书:形状)

  2、在推导的过程中你发现圆的什么没变?(板书;面积)

  (二)、探讨第一问:

  A:多媒体出示16等份圆。

  1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。

  2、学生小组操作。

  3、你会把它变成一个近似长方形吗?学生小组尝试操作。

  4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。

  5、学生展示操作成果。

  B:多媒体出示8等份圆。

  1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?

  2、学生汇报讨论结果。

  3、媒体演示8等份。

  C:多媒体出示32等份

  1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的图形谁更接近长方形。

  2、眼睛微闭想一想。

  3、媒体演示32等份。

  D:多媒体演示三幅图综合画面。

  1、让学生仔细观察后问:哪一等份更接近长方形?

  2、为什么,等份的份数越多就能拼出越接近的长方形。

  F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想

  学生讨论。

  (三)探讨第二问:

  A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?

  2、长方形的面积就是谁的面积?(教师板书)

  3、长方形的.面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)

  板书:长方形面积=长×宽

  圆的面积=圆周长的一半×半径

  B:仔细观察多媒体演示问:

  1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)

  C:推导出圆的面积并且用字母表示。(教师板书)

  D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?

  三:课堂练习

  1、同座互增一个画好半径的圆,求其面积。

  问:先要知道什么条件,再怎样求?

  2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?

  3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何

  解决此问题?

  4、根据下面条件,求出各圆的面积。

  C=6。28米r=1分米d=20毫米

  5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。

  课堂延伸

  学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?

  练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。

  四、课堂小结

  通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?

圆的面积教学设计15

  教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。

  学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。 教学目标:

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学过程:

  一、回顾旧知,引出新知

  1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。

  2、学生回答后老师让学生上前展示自己的方法

  二、创设情境,提出问题

  1、教师引导观察,说说从中得到那些数学信息?

  2、老师引导,找出与圆的面积有关的'数学问题。

  3、学生回答,老师板书(圆的面积)

  三、探究思考,解决问题

  1、让学生估计圆的面积大小

  (1)与同桌说一说你是怎么估的

  (2)汇报,

  (3)老师引导有没有更好的方法

  2、探索圆面积公式

  (1)学生操作

  (2)指名汇报。

  (3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)

  (4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?

  (5)观察汇报:由长方形的面积公式推导圆形的面积计算公

  式,并说出你的理由。

  (6)总结:1、计算圆的面积要那知道那些条件。

  2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。

  四:实践应用

  《圆的面积》教学反思

  教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:

  一、复习占用的时间不当。

  复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

  二、探究没有充分放手。

  在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。

  三、没给问题爆发的机会

  在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?

【圆的面积教学设计】相关文章:

圆的面积教学设计06-09

《圆的面积》教学设计05-19

圆的面积教学设计08-17

[热]圆的面积教学设计07-06

圆的面积教学设计优秀12-27

圆的面积小学数学教学设计05-13

圆的面积教学设计15篇(集合)08-18

圆的面积教学设计【汇编15篇】08-18

圆的面积教学设计【常用15篇】08-28

圆的面积教学设计通用(15篇)08-18