《运算》教学设计锦集(15篇)
作为一名专为他人授业解惑的人民教师,有必要进行细致的教学设计准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。优秀的教学设计都具备一些什么特点呢?下面是小编精心整理的《运算》教学设计,仅供参考,大家一起来看看吧。
《运算》教学设计1
教学内容:
人教版小学数学四年级下P33例1、2
教学目标:
1、使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2、使学生经历比较,猜测,论证,应用的过程,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。
3、使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学重点:
经历探索乘法交换律、乘法结合律的过程。
教学难点:
能运用乘法交换律、结合律进行简便运算。
教学过程
一、复习旧知,导入新课
(前几节课我们已经学习了加法的运算定律,那你们会应用这些定律来解决问题吗?)
出示:
在下列○内填上合适的运算符号。
4○10=10○4(2○3)○5=2○(3○5)。(让学生说出每一道题是运用什么加法运算定律。)
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;那么在乘法中是否也有这些运算定律呢?
3、导入新课。
谈话:带着我们的.猜测,今天我们就来研究乘法中的运算规律。
1、情景中感知乘法交换律。
出示例题。(略)
谈话:请同学们看主题图。图中的小朋友在干什么?你能列出乘法算式求负责挖坑,种树的一共有多少人吗?
学生列式:4×25=100或25×4=100。
提问:我们知道,每组里有4人负责挖坑,种树,一共有25个小组,可以列式4×25,也可以列式25×4。所以,这两道算式可以用什么符号联结?
板书:4×25=25×4。
2、举例验证。
谈话:我们知道4×25=25×4,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
(学生列出几个算式,在学生列出的算式中让学生分别说出左右两边得数是否相等,再写等号。)
3、总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?(每组算式等号两边的两个因数相同,积也相同,不同的是两个因数交换了位置。)
师:对,像这样两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。利用课件出示此规律
提示:你用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?
生:a和b可以表示任何不相同的数。
4、回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?
(学生可能想到:
1、根据一句口诀可以算两道乘法算式;二三得六。
2、用调换因数的位置再乘一遍的方法验算乘法等。教师根据学生回答用媒体演示相关内容。)
师:在验算乘法时,可以用交换因数的位置,再算一遍的方法进行验算,就是用了乘法交换律。
(二)探索乘法结合律。
1、初步感知。
谈话:刚才我们认识了乘法交换律,现在我们继续来研究乘法的运算定律。
出示例题。(略)
谈话:一共要浇多少桶水,你会列式计算吗?
组织学生交流。[选择列为(25×5)×2和25×(5×2)的同学板演]
(也选择25×2×5的同学。先分析这种让学生说说这种列式在题目中表示什么?通过分析让学生明白“25×2”列式没有意义,删除此列式。)
2、引导比较。
提问:两道算式完全一样吗?你发现了什么?(都是求一共要教多少桶水,都是把25、5、2三个数相乘,运算顺序不同,计算结果一样,两个算式也可以用符号连接)
板书:(25×5)×2=25×(5×2)
下面根据前面举例研究运算定律的方法,请大家同桌合作写一写,说一说,试着自己学习
课件出示:
合作讨论:
(1)等号两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。
(两个算式中都是三个因数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
请大家大胆猜测一下,是不是所有的乘法算式中,先把哪两个因数相乘,积都保持不变呢?
(2)举例验证:写出几组这样的算式,并算一算。
(3)你从这些算式中发现什么规律?用语言表述规律,并起名字。
(课件出示:三个数相乘,先把前两个数相乘,,或者先把后两个数相乘,它们的积不变,这叫做乘法的结合律。)
(4)如果用a、b、c分别表示三个因数,你能用含有字母的式子表示吗?
板书:(a×b)×c=a×(b×c)。
小组汇报。教师板书整理。
谈话:刚才我们通过观察—猜测—举例验证—得出结论,找到了乘法结合律,接下来请同学们应用我们今天学习的知识解决问题。
三、尝试运用,理解规律
1、根据乘法运算定律,在里填上适当的数。
15×16=16×
25×7×4=××7
(60×25)×=60×(×8)
125×(8×)=(125×)×14
4×8×25×125=(4×25)×(×)
请每一个同学回答出每一道题目是运用了乘法的什么定律。
2、下面每组算式的得数是否相等?如果相等选择你喜欢的一种算出得数。
4×9×257×125×811×(25×4)
4×25×97×(125×8)25×11×43、使用简便方便计算。
6×4×255×125×6×8
四、引发联想,鼓励探究
谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?
127—53——27—53
72÷3÷872÷8÷3
《运算》教学设计2
复习内容:第十二册第87页“整理与反思”及“练习与实践”的1~8题。
复习目标:
1、使学生进一步认识整数四则运算的意义,正确掌握整数。小数。分数四则运算的法则及整数计算法则与小数计算法则之间的联系,能正确进行计算。让学生掌握加减法之间,乘除法之间的关系,并能应用这种关系进行验算。并在计算过程中熟练地进行估算。
2、使学生在解题过程中依据具体算式灵活地选择计算方式,体会不同计算方式的价值。
3、使学生根据提议正确理解数量关系,合理选择和组合信息。
4、使学生进一步体会百分数的意义和应用,理解相关的基本数量关系,掌握与百分数有关的.计算。
教学准备:课件
课时安排:第一课时
课前设计:
(一)复习四则运算的意义及法则
1、通常所说的四则运算是指什么?(加法。减法。乘法和除法)
四则运算的意义各是怎样的?
2、整数加减法是怎样计算的?[数位对齐,从个位加(减)起]
小数加减法是怎样计算的?[小数点对齐,从最低位加减起]
整数加减法和小数加减法计算时有什么相同的地方?
3、分数加减法是怎样计算的?(同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数相加减的方法进行计算。)
4、整数乘法和除法是怎样计算的?小数乘法和除法的计算有什么相似的地方?有什么不同的地方?
5、分数乘除法是怎样计算的?
(二)完成“练习与实践”第1—8题。
1、完成“练习与实践”第1题。先让学生直接写出得数,再交流总结出相关的口算方法。如果部分学生口算有困难,可以允许他们现写出计算过程,再写出得数。
2、完成“练习与实践”第2题。让学生一组一组地进行计算,通过比较和交流进一步弄清各种运算的计算方法。
3、完成“练习与实践”第3题。这一题的估算练习只要求学生估算整数加。减法和乘法。
4、完成“练习与实践”第4题。先让学生独立完成,再交流各题的验算方法。这一题的演算方法可以是多样的,重点是让学生养成验算的意识和习惯。
5、完成“练习与实践”第5题。先让学生列出解决问题的算式,再依据算式说说怎样计算。要让学生分析简单的数量关系,还要根据具体情况选择是用口算。笔算。估算还是用计算器算。做这4道题不难,关键是让学生以这4题为例,讨论什么情况下用口算,什么情况下用笔算,什么情况下用计算器算,什么情况下只需要估算,加深对这几种计算手段施用情况的感悟。
6、完成“练习与实践”第6题。先帮助学生理解场景中的信息,再让学生正确理解相应的数量关系,合理选择。组合信息。
7、完成“练习与实践”第7题。先让学生弄清应纳税款是多少元的14%,再独立完成。
8、完成“练习与实践”第8题。先出示第8题表中数据,让学生试着比较这几个队员助跑摸底成绩。学生可能在认识上有分歧,要逐步引导他们明确:只比较助跑摸高的厘米数是不合理的,合理的方法是现分别算出每人助跑摸高的厘米数相当于起身高的百分之几,再比较得到的百分数。
《运算》教学设计3
教学目标
1.初步掌握没有括号的两步运算式题的运算顺序.
2.掌握脱式计算的书写要求,并会正确地进行脱式计算.
3.通过学习,培养学生思维的敏捷性及书写规范的好习惯.
教学重点
掌握没有括号、含两级运算的两步式题的运算顺序.
教学难点
正确进行计算.
教具学具准备
投影仪、投影片.
教学步骤
一、铺垫孕伏。
1.口算.
24+8 32-6 3×6 18÷9 47-10
37+5 28÷7 4×6 47-2 54÷9
2.计算.
24+8-6 3×6÷9
47-21+5 28÷7×6
订正时,让学生说说每个算式里含有哪些运算,是按怎样的运算顺序进行计算的.
教师小结:在没有括号的算式里,只有加、减法或只有乘、除法,都要从左往右按顺序运算.
二、探究新知。
我们计算的两步式题,都是直接写出得数.为了看清楚运算的步骤,便于检查运算过程,可以写出运算的步骤和每次计算的结果,用一种新的格式来表示,即脱式.
1.教学例1.
(1)板书: 47-12+5
教师提问:观察算式发现什么?
引导学生明确:算式中只有减法和加法,按从左往右的顺序,依次运算.
教师讲述:用脱式计算两步式题时,要先在原题下面的左边写“=”,再在“=”后面写第一步运算的结果,还设计算的部分要照抄下来,接着对齐上面的“=”,在下一行写“=”,在“=”后面写第二步运算的结果.(边说边板演)
教师板书:
47-12+5
=35+5
=40
(2)学生试算:
48+16-37 54÷9×7
指定两名学生板演.订正时再强调书写格式.
2.教学例2.
(1)板书:6×3+50 50-6×3
教师提问:观察这两个算式,你发现了什么?
教师说明:在没有括号的算式里,有乘法和加、减法,不管乘法在前在后,都要先算乘法.
观察左边的算式,引导学生说明先进行什么运算,教师在乘法算式下面用彩色笔画上横线.表示要先做乘法运算.然后明确再算什么.
观察右边的算式.引导学生说明在这个算式里先算哪一步,教师也在乘法算式下面用彩色笔画上横线,表示要先做乘法运算.
强调:没有参加运算的部分要照抄下来.
让学生试着计算,指定两名学生板演.
(2)指导学生看教科书第9页下面的法则.
勾画出法则并齐读,然后指名复述.
(3)反馈练习
完成例2下面的“做一做”.
19+5×3 7×8-29
提问:在有乘法和加、减法的算式里,先算什么?
学生计算,指定两名学生写在投影片上.订正时要注意书写格式.
3.教学例3.
(1)板书54÷6-7 7+54÷6
提问:观察这两个算式,你又发现了什么?
教师说明:在没有括号的算式里,有除法和加、减法都要先算除法.
引导学生明确:左边的`算式,先算除法运算,再算减法运算.
右边的算式,也是先算除法运算,再算加法运算.
启发学生试算,指定两名学生板演.
(2)指导学生看课本例3上面的法则.
(3)反馈练习:
45÷5-8 36+49÷7
先让学生说一说:有除法和加、减法,应该先算什么,再算什么,然后再计算.
4.师生小结.
在没有括号的算式里,有乘法和加、减法,要先算乘法.有除法和加、减法,要先算除法.
三、全课小结。
师生共同总结本节学习的内容和应注意的问题.
随堂练习
1.根据算式,在( )里填上适当的数.
25-9+36 63÷9×5
=( )+( ) =( )×( )
=( ) =( )
46-7×4 42÷6+39
=( )-( ) =( )+( )
=( ) =( )
2.下面的计算对吗?把不对的改正过来.
4×9+6 24-16÷8
=36÷6 =8÷8
=6 =1
15-6×2 15÷3+2
=9×2 =5+2
=18 =7
3.计算.
7×2+16 30+56÷8 50-4×6 40-24÷8
布置作业
52-36+19 53-3×9
68+4×3 49÷7×6
63÷7-5 81-45÷5
《运算》教学设计4
教材分析
1.本节课之前,学生已经掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算的基础上来学习本节课的算式中没有括号只有乘法和加、减法的四则混合运算顺序和列综合算式解答两步计算的实际问题。这两部分的内容是相辅相成、有机结合的。
2.计算工具在当今社会和现实生活中已经普及了,人们已经不大需要使用纸笔进行大数目、多步数的计算。但是四则计算的原理与方法、混合运算的顺序、步骤仍然是本节课的重要教学内容。同时在学习中感受数学与生活之间的联系。
学情分析
本节课之前,学生已经掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算的'基础上来学习本节课的算式中没有括号只有乘法和加、减法的四则混合运算顺序和列综合算式解答两步计算的实际问题。在教学中学生比较难掌握的是列综合算式解答两步计算的实际问题。通过分析解决问题的思路结合解决问题的过程来突破含有乘法和加、减法的两步的运算顺序与书写格式,在学生交流中根据题意来理解和明确运算的顺序。
教学目标
理解综合算式的含义,掌握含有乘法和加、减法的两步的运算顺序与书写格式。
教学重点和难点
教学重点:掌握含有乘法和加、减法的两步的运算顺序与书写格式。
教学难点:列综合算式解答两步计算的实际问题
《运算》教学设计5
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第35~36页。
教学目标
1. 使学生在解决实际问题的过程中,理解并掌握三步混合运算的顺序,并能正确地进行运算。
2. 使学生在理解混合运算顺序的过程中,进一步积累数学学习的经验,能用三步计算解决实际问题,发展数学思维。
3. 使学生在数学学习中,进一步感受混合运算的应用价值,增强对数学学习的信心,培养严谨、认真的学习习惯。
教学过程
一、 铺垫
1. 第一轮第一次游戏:用三张牌“算24点”。
谈话:“算24点”游戏是我国劳动人民发明创造的,它具有益智、怡情等功能,因而备受人们的喜爱。今天,我们也来玩一玩“算24点”的游戏怎样?
呈现三张扑克牌:2、4、10。
待学生列出:2 × 10 + 4和4 + 2 × 10之后,教师追问:两道算式不同,都能算得24吗?为什么?
板书:算式中有乘法和加法时,先算乘法,再算加法。
2. 第一轮第二次游戏:教师再呈现三张扑克牌:4、4、7。
提问:
(1) 这道题我们也可以列出两道算式吗?为什么?
(2) 4 × 7 - 4的算式中,我们可以先算减法吗?
(3) 算式中有乘法和减法时,应该按什么顺序进行运算呢?
[设计意图:本节课的引入方式可有多种,比如教材中联系实际问题,从具体的情境引入便是其中的一种。可这里似乎也有一些值得讨论的地方:一方面,我们可以借助具体的情景帮助学生理解混合运算的顺序,以便从算理上弄清为什么“先算乘、除法,后算加、减法”的道理。但另一方面,我们又不能不看到,到了三步以上的混合运算,如果要嵌入具体的情景之中,对学生的思维要求,特别是解决问题能力的要求是比较高的。因此,新课的引入,不应拘泥于一种固定不变的模式,而应该从学生已有的知识经验出发,寻求一个最能激发学生探索愿望、最有利于学生自主探索的切入口,使学生在有效的学习活动中得到充分的发展。
怎样才能使教学活动既符合学生的认知基础,又富有一定的现实性和挑战性呢?我想到了“算24点”这个游戏。
理由有三:
一是这个游戏学生玩过,有经验、有兴趣,且不会在游戏规则的问题上耗费太多的时间;
二是游戏的机动性强,三张牌、四张牌都可以玩,而用三张牌玩,刚好对应学生已经掌握的两步混合运算知识,用四张牌则对应了这节课将要学习的新知,这使得学生激活已有的经验成为可能,又使得旧知向新知的过渡变得自然而顺畅;
三是算式被赋予了恰如其分的“意义”,学生要算得24,在头脑中已经经历了一个“分步列式”的过程,一旦形成综合算式,并不影响头脑中原有的运算顺序,相反,学生正是用头脑中已经确定的运算顺序来阐释综合算式的运算顺序,这就使得综合算式的运算顺序与学生头脑中的解题顺序对应起来,从而体会到混合运算顺序的合理性。]
二、 新授
1. 第二轮第一次游戏。
引导:我们用四张牌来玩“算24点”游戏,情况会怎样呢?
教师呈现四张扑克牌:2、2、5、7。
要求:个人独立思考,尝试列出综合算式,然后将意见带到小组内进行交流。
小组交流:
(1) 小组内成员所列的算式都相同吗?
(2) 这些算式运算的顺序和步骤也相同吗?
(3) 比较不同的运算顺序,有区别吗?
根据学生的回答,教师分别呈现:
2×5+2×7 2×5+2×7
=10+2×7=10+14
=10+14=24
=24
2. 引导比较:两种运算顺序都是正确的,但哪一种运算过程更简单一些呢?
3. 教师呈现:40 ÷ 4 - 28 ÷ 7,要求学生独立计算。
4. 比较:2 × 5 + 2 × 7和40 ÷ 4 - 28 ÷ 7的运算顺序有什么相同的地方?
5. 第二轮第二次游戏。
教师呈现四张扑克牌:3、6、6、9。
学生先行独立思考后,在小组内进行第二次合作。
学生可能列出的算式有:6 × 6 - 3 - 9,6 + 6 ÷ 3 × 9,6 + 9 ÷ 3 × 6,6 + 6 × 9 ÷ 3,3 + 6 + 6 + 9……
6. 将上面的算式按运算顺序的不同进行分类,观察分析后比较:
(1) 哪些算式不是按照从左往右的顺序进行运算的`?这些算式有什么共同的特征?
(2) 哪些算式应该按照从左往右的顺序进行运算?这些算式有哪些相同和不同?
(3) 在没有括号的算式里,如果有乘、除法和加、减法,应按照怎样的顺序进行运算呢?
7. 小结规律,板书课题:混合运算。
[设计意图:学生得出“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法”,其实是经历一个归纳推理的过程。为了让学生对得出的结论深信不疑,我们应努力呈现各种情况,让学生在分析、比较、综合、概括的过程中加深对事理的理解。这一部分,我安排了两轮游戏,其作用分别对应于教材中的“例题”和“试一试”两部分的知识要点。第一部分侧重于体验学习,学生亲历尝试和交流,体会将算式中的乘法同时运算的优越性。第二部分侧重于分类和归纳,在开放的情境中比较同一级运算与两级运算的区别,进而发现两级运算的共同特征。值得一提的是,这一部分我着意引导学生进行了多次比较,如简单运算与较复杂运算的比较,同一类运算中不同运算顺序的比较等等,落脚点都是为了帮助学生建立起两级运算的运算顺序,增强学生的抗干扰能力。]
三、 巩固
1. 先说一说下面各题的运算顺序,再计算。
80 ÷ 2 + 76 ÷ 4 240 ÷ 6 - 2 × 17
45 - 20 × 3 ÷ 4 51 - 36 ÷ 3 + 25
评讲:第一行两道题怎样计算更简便些?第二行两道题的运算顺序有什么不同?为什么会有这样的不同?
2. 小虎学了今天的知识以后,很高兴,老师要求完成20 × 5 - 20 × 5和20 × 5 ÷ 20 × 5两题的计算,小虎不一会儿就算好了。同学们,我们也来看一看,小虎做得对吗?
20×5-20×5 20×5÷20×5
=100-100=100÷100
=0=1
[设计意图:小虎做的两题形式上比较相近,但第二题属同一级运算,第一题是两级运算。根据教学的前馈信息,学生常常容易发生混淆,故此处将两题同时呈现出来专门研究,便有了必要性。]
3. “想想做做”第4题。
学生独立完成后,讨论:求兵兵家的人均居住面积比乐乐家大多少,要先算什么,再算什么?
4. 在数与数之间添上加、减、乘或除号,使计算结果正好等于右边的数。
2 2 2 2 = 1
2 2 2 2 = 2
2 2 2 2 = 3
2 2 2 2 = 4
2 2 2 2 = 5
[设计意图:练习设计努力体现针对性、层次性、综合性、开放性等特点,不仅立足于帮助学生巩固计算的方法,加深学生对本节课知识的理解,而且在不断变式的过程中,引导学生学习有趣的数学、有用的数学、智慧的数学。]
《运算》教学设计6
教学目标:
1、使学生在解决问题的过程中感受小括号的作用,理解并掌握含有两级运算(有小括号)的运算顺序,并能正确计算。
2、在经历探索和交流解决实际问题的过程中感受解决问题的一些策略,学会用综合算式解决两三步计算的实际问题。
3、培养学生养成认真审题、独立思考等学习习惯,提升计算和解决问题的能力。
教学重难点:
1、掌握含有小括号的混合运算的顺序。
2、能合理地解决简单的实际问题,掌握解决问题的步骤和策略。
教学过程:
一、创设情景,提出问题
(出示情境图)
(一)、要解决这些问题,必须知道什么信息?
1、冰雪天地里,滑冰区的游人比滑雪区多几位?
2、在冰雪天地游玩的一共有多少位游人?
3、上周末冰雕区的门票收入是4000元,你能知道这一天冰雕区游客的人数吗?
(二)、出示情境图
从图中你可以获取哪些数学信息?(冰雕区上午有游人180位,下午有270位,每30位游人需要一名保洁员)
根据这些信息,你能解决什么数学问题?(让学生在草稿本上写下来,然后汇报)
估计会提出:1、上午和下午一共有几位游客?
2、下午比上午多几位游客?
3、上午需要几名保洁员?
4、下午需要几名保洁员?
5、下午比上午多派几名保洁员?
6、上午和下午一共派了几名保洁员?
(一步计算的问题指名学生口答)
二、自主探究、解决问题
这两个问题不能直接一步解答,该怎样解答呢?就是我们今天要来研究的问题。
要求下午比上午多派几名保洁员?你能不能通过算式把自己解决问题的过程表示出来呢?
1、学生独立尝试解答问题5
2、教师巡视,然后让不同解法的孩子板演(请板书的学生说说自己的思考过程,或者请其他的学生来猜猜这位同学的思考过程。)
270÷30=9 270÷30-180÷30 (270-180)÷30 270-180=90
180÷30=6 =9-6 =90÷30 90÷30=3
9-6=3 =3 =3
第三种方法介绍时提问:为什么要加括号?不加括号可以吗?
师小结:对呀,不加括号的话就要先算——,再算——就不符合我们要解决的问题了,这个时候就需要用括号把这一步括起来,这个算式才正确表示了我们要解决问题的方法步骤。
括号是用来改变运算顺序的。算式里有括号,要先算括号里面的。
3、同桌交流:我是怎么解答的?
4、比较两种算法的不同点。
师小结:看来,在解决问题时思考的角度不同,解决问题的方法也不同,计算的步数也不一样,有些实际问题用三步计算解决,也可以用两步计算解决,但是,不管怎样,最后的目的都是一致的`。
5、
三、多层训练、拓展创新
1解决问题6及p11 做一做(要求列综合算式解答)
①学生独立解答后集体校对:分析数量关系,理清解题思路
②比较两个含有括号的算式的相同点,得出:有括号的算式,要先算括号里面的。、
2、按照计算要求,下面的算式要不要加括号?怎样加括号?
①72 - 30 + 22 第一步算加法
②36+24 ÷ 6 第一步算加法
③58 - 6 × 7 第一步算乘法
④72 ÷ 2×6 第一步算乘法
⑤35÷ 5+2 ×4 第一步算加法
4、用递等式计算
72 -(30 + 22) (36+24 )÷ 6 35÷(5+2)×4
5、连线
401班同学游玩冰天雪地后,帮助工作人员整理冰雕区、滑雪区的场地,清扫景区内道路上的垃圾。每40平方米场地派1个同学。另外派16个同学分成2组去清扫景区道路。滑冰区占地1000平方米,冰雕区占地800平方民(信息以图文形式出示)
①1000÷40-800÷40 ①清扫道路的比整理滑冰区的少几人?
②16+1000÷40 ②整理冰雕区和滑冰区的一共有几人?
③800÷40 -16 ③整理冰雕区的人数比滑冰区多几人?
④(1000 +800)÷40 ④清扫道路和整理冰雕区的一共有几人?
先让学生搜集整理信息,然后根据所给的算式与相匹配的问题连线,分析数量关系,最后时间有多的话安排:让学生提出问题,并列出算式。
四、全课总结
今天这节课你有什么收获?在计算有括号的算时,你要提醒大家注意什么?
《运算》教学设计7
学习目标:
1.熟练地掌握小数四则混合运算的运算顺序。
2.正确、迅速地进行整数、小数四则混合运算。
3.培养学生抽象概括能力。
4.培养学生认真审题,认真计算的良好学习习惯。
学习重点:掌握小数四则混合运算的.运算顺序。
正确、迅速地进行整数、小数四则混合运算。
学习难点:利用知识的迁移,总结四则混合运算的运算顺序。
学具准备:
预习准备
(3)我学过,我会做:
计算下面各题:(先说说运算顺序再计算)
3+15-1610÷2×516-7×2
129+(74-52)÷27×[25+(36÷3-7)]
上面几个题的运算顺序怎样?(小组内说一说。填一填)
一个算式里,如果只含同级运算,应从()往()依次计算;如果含有两级运算,要先算()法,再算()法;如果有括号,要先算()里面的,再算()外面的。复习整数四则混合运算顺序
新课自学尝试
(6)探究新知:(学习课本P74)
1、刘老师为给9月份的“文明之星”发奖品。用20元买三支钢笔和一个笔计本,每支钢笔3.5元,每个笔计本7.4元。还剩多少元?
自学提示:应先算什么?再算什么?
可以先算买3支钢笔后剩多少元,再算买笔计本后还剩多少元。列式:
计算时先算()法,再算()法
还可以先算买两种商品一共用了多少元,再算剩下多少元。列式:
计算时先算()里面的。
2、试一试:
7-0.5×14+0.833.6÷0.4-1.2×5
20.9+10.5÷(5.2-3.5)9.4×[1.28-(1.54-0.31)]借助生活情景,引入新知
探讨运算顺序
尝试计算
概括计算方法
展示研讨
(5)课堂总结
议一议:小数四则混合运算的运算顺序是怎样?
结论:小数四则混合运算的运算顺序和整数四则混合运算的运算顺序()。
达标检测拓展练习十六第3题、第5题(书上)巩固新知
课堂收获与不足这节课我学会了:
《运算》教学设计8
教学目标:
1、让学生掌握整数、小数四则混合运算的法则;
2、帮助学生掌握除法的商的小数位数较多或出现循环小数时,一般可以保留两位小数,再进行除的计算法则。
教学重点、难点:
让学生掌握在除法中商的小数位数较多或出现循环小数时,一般可以保留两位小数,再进行除的计算法则。
教学方法:
引导、讨论、点拨、巩固。
教学内容:
第60页例2。
课前准备:
课件、本子。
教学过程:
一、导入:
1、直接揭示课题——整数、小数四则混合运算。(课件1)
2、复习:(1)9.5-3.6÷5+0.18(2)1.3×(8.2-7.32)(课件2)
二、新授:
例2计算6.9 ÷[(0.4+0.5)×0.6](课件3)
1、读题。
2、讨论:(1)你发现了什么?(A。有+、×、÷三种运算符号;B、括号有中括号与小括号)(2)根据刚才的发现,你准备怎样来运算这道题目?(突出——先算小括号再算中括号)
3、计算:请学生在本子上操练后,选一位学生的练习投影在银幕上。
6.9 ÷[(0.4+0.5)×0.6]
=6.9 ÷[0.9×0.6]
=6.9 ÷0.54
=12.777……
4、 评价:让学生评价,重点突出——
(1)运算顺序
(2)计算中的发现———本题答案是循环小数。
5、出示下列一句话:
注意:在运算过程中,如果遇到除法的商的小数位数较多或出现循环小数时,一般可以保留两位小数,再进行计算。(课件4)
根据上述新的知识,例2的运算结果应该是“12.78”。但是,“12.78”是取商的`近似值,因此,“12.78”前应该用什么符号?为什么?
6、出示下列第二句话:
切记:在运算过程中,除到哪一位的商是无限小数,在保留两位小数取它的近似值时,应该在那一位上用“≈”。(课件5)
因此,例2的运算应该是——
6.9 ÷[(0.4+0.5)×0.6]
=6.9 ÷[0.9×0.6]
=6.9 ÷0.54
≈12.78(课件6)
(二)试练:3.6÷(0.5+0.3×4)(课件7)(试练后让学生联系新知识进行评价,其中突出运算过程的最后一步用“≈”,并且保留两位小数)
(三)做一做:12.6÷[14-(1.7+7.8)](课件8)(做完后让学生联系新知识继续评价,其中进一步突出运算过程的最后一步用“≈”,并且保留两位小数)
二、判断:(课件9)
5×[63.9÷3×(7.5-5.5)] 25÷3-(2.6+3.44)
=5×[23.3×2] =25÷3-6.04
=5×46.6 =8.3-6.04
=233 =2.26
操作顺序——先计算,再小组讨论,后全班交流。其中突出第二题的第二步应该是,在保留两位小数取它的近似值时,必须用“≈”。即运算过程为:
25÷3-(2.6+3.44)
=25÷3-6.04
《运算》教学设计9
教学类型:探究研究型
设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。
第 1 张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第 2 张PPT
28秒以内
2.规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
第 3 张PPT
2分10 秒以内
3.抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的'数学规律。
第 4 张PPT
30秒以内
4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第 5 张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第 6 张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好.
《运算》教学设计10
一、创设情境 ,导入新课。
你们到商店买过东西吗?
一般买东西的时候你会考虑哪几个问题?
(比如自己带了多少钱?东西的单价?准备购买的数量……)
出示挂图:
看挂图:说说看上面告诉我们哪几个信息?
(让学生看图一一说说几样东西的单价)
二、认识“综合算式”
1、提问题:谁能根据这些信息来提个问题呢?
(学生可能会提一步计算的问题。)
老师引导学生解答后,:问:谁能提需要两步计算才能解决的`问题呢?
比如:买3本笔记本和一个书包,一共用去多少钱?
2、解决:
请大家解答这个问题,写在自备本上
交流:(1)3×5=15元,15+20=35元
(2)3×5+20=35元
(3)20+3×5=35元
讲评:(1)说说第一种算法每一步分别表示什么意思?
(2)说说第2个算式先算的是什么?再算的是什么?
(3)再说说第3个算式的计算顺序
3、综合算式:比较这3个算式,它们有什么不同?
指出:第1个算式是一个算式解决一个问题,分两步来完成的,我们把它叫做分步列式。而后面的做法是把上面的两个算式合并在一起写的,我们叫它综合算式。
综合算式在解答时,其实是有它的格式。比如:3×5+20 (边说边板书计算格式,注意说清楚:先算什么,没算的移下来,2个“=”号。
要对齐……)这种等式叫递等式
最后别忘了单位名称和答
4、刚才我们用综合算式解决了一个问题,谁再能提一个可以用综合算式解决的问题呢?
随学生回答老师板书该问题,并请学生用综合算式完成解答
教师巡视,注意发现不规范的地方,提醒大家。
可能用有学生提到类似于书上的问题,如买2盒水彩笔,付出50元,应找回多少钱?
请学生解答后,与刚才的算式比一比。
两个算式在计算顺序上,你发现了什么?
(一个乘在前一个乘在后,但在计算的时候都是先算乘,再算加或减的)
指出:计算的时候,我们并不是太讲究“先来后到”,而是更注意“论资排辈”。乘法一遇到加或减,就要充老大,都是轮到它先算。
三、练习:
1、学生完成第1题,老师巡视,注意发现问题及时给予指导
2、改错,要求学生能清楚地说问错在哪里?以及如何解决?
3、算一算,比一比(第4题)
让学生先独立完成,再请几个报得数,注意如果有错的,帮助他检查是否是运算顺序出错了。
四、作业:
第31页第3、5题
《运算》教学设计11
教学内容:苏教版小学数学四年级上册56~58页
教学目标:
1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的.意识和习惯。
教学重点:
用观察、猜想、验证的方法探索加法交换律和结合律,能正确地用字母来表示。
教学难点: 用语言表述加法结合律和加法交换律。
教学准备:多媒体课件
教学过程:
一、开门见山,直入主题。
1、同学们,喜欢体育活动吗?都喜欢哪些体育活动呀?
2、经常体育活动可以强身健体,这些小朋友也在开展活动,看,从图中你获得了那些数学信息?
3、根据这些信息,你能提出用加法计算的问题吗?
二、教学例题,验证规律。
1、根据学生的问题,随机选择主要的两个来研究。
(1)跳绳的有多少人 ?(2)参加活动的一共有多少人?
2、师生研究第一个问题,得出加法交换律。
(1)学生读题,弄清题意。
(2)学生说算式和结果,教师出示28+17=45 人和17+28=45人
(3)请观察这两道算式,它们都是求什么?结果相同吗?我们可以用“=”把它们连起来
(4)教师板书:28+17=17+28)
(5)学生读算式并观察思考。得出加法交换律 :两个数相加,交换了位置,和不变。
3、抛出问题,得出猜想。
(1)教师问:是不是任意两个加数,交换了位置,和都不变呢?
(2)小结: 看来经过一个算式得到的结论,只能是一个猜想,要验证这个猜想,就要举更多的例子。
4、验证猜想,体会方法。
(1)同桌两人合作,选好两个数,比如一人算6+8, 另一人算8+6,比比结果,如果相同就可以写出一个等式,坐在左边的同学负责记下这个等式。
(2) 学生汇报,教师板书。
教师小结: 照这样下去,能写完吗 ?加省略号。这些例子都在说明“交换两个加数的位置,和不变”是正确的。
(3) 学生找一找,交换加数的位置,和变的例子。
教师通过互联网,求助结果,进一步证明加法交换律的正确性。
5、得出结论,字母表示。
(1)学生读结论。(2)学生用自己喜欢的方式表示所有的算式。(3)归纳小结,指出加法交换律。
6、 及时巩固,联系旧知。
三、运用方法,继续探究。
1、出现第二个问题:“参加活动的一共有多少人?”
学生读题。在本子上用综合算式解答。
2、交流想法,得出算式。
(28+17)+23 28+(17+23) )
师生交流:这两道算式都是求什么?他们的得数相同。我们也可以用等号把它们连起来。
教师板书:(28+17)+23 = 28+(17+23)
3、 学生做书上的题目,继续认识这样的等式。
4、根据等式,提出猜想。
5、学生验证猜想,教师随机点拨。
(1) 出示友情提示:1、同桌合作,想好三个数,按顺序计算和先算后两个数,看有什么发现?。2、 在小组里说一说你们的验证过程。
(2)学生汇报,板演等式。
(3)小结结果,得出结论。
6、用字母表示加法结合律
板书:(a+b)+c=a+(b+c)
7、联系交换律,比较两个定律的相同点和不同点。
四、分层练习,巩固新知。
1、完成“想想做做”第1题。其中最后一题,要提醒学生注意:它先是运用了加法交换律,又运用了加法结合律。
2、第二题。
学生在课本上独立完成,再想想为什么这样填?
生口答,师演示过程。
3、第4题,从每组题目中选择你喜欢的一题做一做。
学生汇报,教师引导。
五、总结全课:同学们交流收获。
《运算》教学设计12
学习目标:
(一)知识与技能目标
使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.
(二)过程与方法目标
经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性
(三)情感与价值目标
渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.
学习重点:掌握分式的乘除运算。
学习难点:分子、分母为多项式的分式乘除法运算。
教学过程
一、情境引入:
你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?
(1) = (2) =
二、探究学习:
(1)你能说出前面两道题的计算结果吗?
(2)你能验证分式乘.除运算法则是合理的.正确的吗?
(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?
归纳小结:
(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。
(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。
(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn
三、典型例题:
例1、计算:1. . 2。( )
例2、计算、1. 2.
归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.
四、反馈练习:
(1) (2) .
(3) (a-4). (4)
五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?
(2)你认为买大西瓜合算还是买小西瓜合算?
七、课堂小结:
1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。
2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。
【课后作业】
班级 姓名 学号
1、 填空
(1) (2)
(3) (4)
(5) = (6)
(7)若代数式 有意义,则x的'取值范围是__________.
2、选择
(1)下列各式计算正确的是 ( )
A. ; B.
C. ; D.
(2)下列各式的计算过程及结果都正确的是 ( )
A.
B.
C.
D.
(3)当 , 时,代数式 的值为( )
A.49 B.-49 C.3954 D.-3954
(4)计算 与 的结果 ( )
A.相等 B.互为倒数 C.互为相反数 D.以上都不对
(5)若x等于它的倒数,则 的值是 ( )
A.-3 B.-2 C.-1 D.0
3、计算
(1) (2)
4、中考链接(选作题)
已知aba+b =13 ,bcb+c =14 ,aca+c =15 ,求代数式abcab+bc+ac 的值。
《运算》教学设计13
四年级数学下册《四则运算》复习课教学设计
一、教学内容
P13例6(0的运算)
二、教学目标
1、使学生掌握关于0的运算时应该注意的问题。
2、0不能做除数及原因。
3、复习巩固《四则运算》的知识。
三、教学重、难点
0不能做除数及原因。
四、教学过程
(一) 谈话导入
师:我们上周一直在学习四则运算,主要讲了四则混合运算,不知道你们的掌握情况怎么样?现在我们就来做几道题。
课件显示:
(1) 24+56 - 40
(2) 8×7÷2
(3) 2+3+6×5
(4) 72÷9 - 1×3
(5) (9+11) ×5
做好评比!
(二)回顾四则运算的概念、运算顺序
老师提问,学生回答,老师板书,然后课件再次显示关于四则运算的概念以及四则混合运算的运算顺序。
加法
减法
乘法
除法
四
则
混
合
运
算
没有括号的
加减混合或乘除混合:
左
右
加减乘除混合:
先乘除,再加减
有括号的:
先算括号里面的
文本框: 四 则 运 算
(三)新授
1、引入
(1)快速口算
排火车进行快速口算
课件显示:
(1)100+0= (2)0+56=
(3)0×78= (4)154-0=
(5)0÷23= (6)28-28=
(7)0÷76= (8)235+0=
(9)99-0= (10)49-49=
(11)0×29= (12)9×0=
(13)35-35=
(2)举例总结关于0的四则运算,在运算时应该注意些什么
课件显示
一个数加上0,还得原数;
被减数等于减数,差是0;
一个数减去0,还得原数;
一个数和0相乘,仍得0;
0除以一个非0的数,还得0;
100+0=100
0+56=56
28-28=0
49-49=0
154-0=154
99-0=99
0×78=0
29×0=0
0÷23=0
0÷76=0
(3)0不能作除数
课件显示:
0不能作除数
18÷9=? 2×9=18
36÷6=? 6×6=36
6÷0=? ?×0 =6
6÷0是不可能得到商的,因为找不到一个数同0相乘得到6
0÷0=? ?×0=0
0÷0 是不可能得到一个确定的`商,因为0乘以任何数都得0
(4)巩固运用0不能作除数
考考你!判断对错
课件显示:
(1)128+0= 128 (2)0+45=45
(3)88+0= 0 (4)1×0=1
(5)0×97=0 (6)0÷56 =0
(7)16÷0 = 0 (8)60-0=60
(9)0÷76 =76 (10)10÷0=10
(四)巩固练习
1、 应用题的解答
课件显示:
寒假中,小明3天完成87道口算题,照这样计算,他6天能完成多少道 口算题?
一个水果店运来苹果、香蕉各8箱。苹果每箱25千克,香蕉每箱18千克。一共运来水果多少千克?
2、判断并改错
课件显示:155-34+46
=155-80
=75
240÷40×3
=240÷120
=2
让学生先判断再自己改错,提醒注意在四则混合运算中的运算顺序!
(五)做课堂练习,结课
做书《练习二》的第二题,以巩固。
五、作业设计
1、背会《四则运算》的概念及四则混合运算的运算顺序;
2、做《学习之友》单元测试题
《运算》教学设计14
学习目标
1、知道乘法结合律,能运用运算定律进行一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性
3、能用所学知识解决简单的实际问题。
学习难点:探究和理解结合律,能运用运算定律进行一些简便运算。
学习重点:探究和理解结合律,能运用运算定律进行一些简便运算。
教学流程:
一、 出示课题
板书:探究和理解结合律,能运用运算定律进行一些简便运算。
二、出示学习目标
1、知道乘法结合律,能运用运算定律进行一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性
3、能用所学知识解决简单的实际问题。
三、自学指导
自学书本第25页的内容,自己完成以下的问题:
主题图引入(观察主题图,根据条件提出问题。)
一、自学提纲
1、针对上面的问题1列出算式,有几种列法。
2、为什么列的式子不同,它们的计算结果是怎样的。
3、两个算式有什么特点?你还能举出其他这样的例子吗?
4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?
5、乘法结合律有什么作用。
6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的.另一个规律吗?
7、这组算式发现了什么?
二、 小组合作学习
根据自学指导,交流汇报,验证。
1、小组讨论乘法的结合律、结合律用字母怎样表示。
2、各小组展示自己小组记定律的方法。
3、分别说说是用什么方法记住这些运算定律的。
4、讨论为什么要学习运算定律。
先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
三、 交流汇报,集体订正
四、 当堂训练
1、下面的算式用了什么定律
(60×25)×8=60×(25×8)
2、 27/2—4 P25/做一做2
3、在□里填上合适的数。
30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□
《运算》教学设计15
教学目标:
1让学生联系生活情境,理解加减混合的含义和计算顺序,能正确地进行口算。
2、发展学生初步的计算能力、语言表达能力和思维能力。
3、培养学生认真倾听和认真书写的习惯。
4让学生在解决问题的过程中,体会数学与生活的联系,培养数学应用意识。
教学重点:让学生掌握正确的计算方法和培养学生看、听、说、写等良好学习习惯。
教学难点:让学生理解加减混合的含义和计算顺序。
教具、学具准备:多媒体课件、小木棒、口算卡片。
教学过程:
一、创设情境,激发兴趣。
同学们,你们喜欢听儿歌吗?(喜欢)好,我们一起来听一首《数鸭子》的'儿歌吧,播放儿歌,好听吗?你们听到了那些数学数字呀?(1、2、3、4、6、7、8)你们真厉害!
你们能用这些数字组成连加连减的算式吗?(能)
生1: 1+2+3=6、 6-3-2=1
生2: 1+2+4=7、 7-1-2=4
生3: 1+3+4=8 、 8-4-3=1
你们知道是怎么算的吗?
生:都是先算前面的再算后面的。
二、主动探索,体会领悟。
1、提出问题。
多媒体出示例题图:车上有7人,先下车2人,接着上3人。
提问:
从刚才的画面中,你们看到了什么?先在小组里说一说。(学生在小组内交流)
谁愿意在班上说一说?指名说,真棒!
你们能把刚才看到的列成算式吗?学生列算式:7-2+3
(板书:7-2+3)
(4)哪位同学试着读读看?(7减2再加3)
老师领读,学生齐读,同桌互读。
2、揭示课题。
这道题跟我们前面学习的连加、连减有什么不同?
指出:像这样有加又有减的算式,叫加减混合,这就是我们今天要学习的内容。
(板书:加减混合)
3、探究算法。
(1)怎么算呢?能摆一摆你们的小木棒吗/?请同学们一边摆一边说。
(2)摆完小木棒,你们知道怎么算了吗?先算什么?再算什么?
板书:7-2+3=8
5指名再说说计算过程,同桌互相说说。(先算7-2=5,再算5+3=8,所以7-2+3=8)
小结。
像“7-2+3”这样有加又有减的加减混合题,计算方法与连加连减一样:都是先算前面的,再算后面的。(板书:先算前面的,再算后面的)
三、巩固深化,应用拓展
1、表演
(1)你们愿意把刚才看到的上下车情境演一演吗?指名表演。
(2)谁愿意把刚才看到的表演说一说?指名说:车上原来有7人,先下车2人,又上车3人,现在车上还剩8人。
(3)请同学们把刚才看到的听到的列出算式。学生列式计算:7-2+3=8,再说出计算过程。
2、老师也来说一道题,你们一边听一边写出算式,看谁听得最认真:树上原来有5只小鸟,飞来了4只,又飞走了2只,现在树上还有几只?学生列式计算:5+4-2=7
3、谁也想来说一道?先后让几位学生说说,其他的边听边列式计算,并指名说说计算过程。
4、第1、2题。
指导学生认真观察图画,帮助学生弄清题意,列出算式,再说出计算过程。
5、听算。(8道)
(1)老师说出算式,学生边听边写边算。
(2)集体校对。
6、看算。(10道)
老师出示口算题,学生伸出十指,边看边说边屈手指算。
7、唱儿歌。
现在我们来休息一会,唱一首《找朋友》的儿歌,好吗?(好)
8、做游戏。(第4题)
除了喜欢唱歌,你们还喜欢做游戏吗?好,现在我们就来做一个《找朋友》的游戏,游戏也是要通过认真计算才能找到好朋友的哦,准备好了吗?请拿出你们手中的小卡片,(答案)老师手中有你们的好朋友,(题目)看谁找得又对又快。同学们都找到了好朋友,高兴吗?
9、第6题。
比一比,看谁写得最端正,算得最认真。
四、作业。
第3题:比一比,看谁写得又快又对。
五、课堂总结。
今天这节课你们学到了什么本领?
以上就是数学网小编分享加减混合运算的教案的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!
【《运算》教学设计】相关文章:
《运算》教学设计08-24
0的运算教学设计06-16
分式的运算教学设计05-25
《混合运算》教学设计优秀10-18
《分数简便运算》教学设计优秀12-12
乘法运算定律教学设计05-26
不含括号的混合运算教学设计12-05
分数四则混合运算教学设计06-16
乘法运算定律教学设计13篇05-26
《整数运算定律推广到小数》教学设计04-14