我要投稿 投诉建议

交换律教学设计

时间:2024-08-19 13:14:56 教学设计 我要投稿

交换律教学设计

  作为一名老师,很有必要精心设计一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计要怎么写呢?以下是小编整理的交换律教学设计,欢迎大家分享。

交换律教学设计

交换律教学设计1

  教学目标

  1、探索和理解加法交换律,并能灵活运用。

  2、感受数学与现实生活的联系,并能用所学知识解决简单的实际问题。 教学重、难点

  从现实的问题情景中抽象概括出加法交换律。

  教学过程

  一、诱趣激学

  同学们喜欢看动画片吗?老师这里有一个小动画

  1·动画片《朝三暮四》

  2·引发思考,感知规律

  看完这个动画片,你想对同学们说些什么?(如果学生们笑了,就借机问问学生们笑什么?)引导说出:

  4+3=7(个) 3+4=7(个)课件出示

  问:这两个算式有什么联系?(得数都等于7,都表示猴子一天吃的桃子)。这两个算式之间可以用什么数学符号连接起来呢?(等号)

  课件演示:4+3=3+4

  二、自主探究,寻找规律

  1.解决问题,发现规律

  谈话:其实这样的数学问题就在我们身边,同学们会骑自行吗?(会),李叔叔也会骑车,他这里有一个问题需要我们帮忙解决一下。 课件出示骑车主题图。

  问:从中你可以得到哪些信息?要求什么呢?(上午骑了40千米,下午骑了56千米,今天一共骑了多少千米?)

  问:一共骑了多少千米?能列式计算解决这个问题吗?(能)

  请在草稿本上做,老师下去找到需要的答案,板书黑板。

  40+56=96(千米)56+40=96(千米)

  问:观察这两个同学的列式,你们发现呢什么?

  两个算式计算的结果都是一样的,我们可以用等号连接起来。

  课件出示40+56=96(千米)56+40=96(千米)

  40+56=56+40

  2.举例猜想,概括规律

  课件出示4+3=3+440+56=56+40

  观察这两组算式,都是两边计算的'结果相等,可以用等号连接,你能再举出几个这样的列子吗?同桌互相交流。

  全班交流,把学生的汇报结果写在黑板上。

  同学们真聪明,举了这么多的列子,你能发现什么规律吗?请用最简洁的话概括出来。 同桌交流。

  全班交流,总结板书:两个加数交换位置,和不变。

  问:你能给这个规律起个名字吗?(加法交换律)

  我把加数换成其他任意的数,交换律还成立吗?老师这里有几组算式 课件出示讲解过程

  ① 30+20 两位数加上两位数,交换加数的位置,和是不变

  ② 100+30 三位数加上两位数,交换加数的位置,和也是不变

  ③ 1000+200 四位数加上三位数,交换加数的位置,和还是不变

  刚才经过同学们的努力,我们发现了不管这两个加数是什么,只要两个加数交换了位置,他们的和不变。我们把这个规律叫做加法交换律。(板书:加法交换律)课件出示加法交换律的内容。

  3.用喜欢的方式表示规律

  怎样表示任意两数相加,交换加数位置和不变呢?你能用自己喜欢的方式表示吗?

  请同学们相互讨论,老师下去帮助同学

  全班交流 想法一:甲数+乙数=乙数+甲数

  想法二:□+○=○+□

  想法三:a+b=b+a

  师:同学们各抒己见,用了这么多的方式表示。同学们觉得哪一种最好呢?为什么?(简洁明了。)

  课件出示:a+b=b+a

  谈话:咱们知道了加法交换律,并且会用自己喜欢的方式表示,请同学们想一想,以前学过的知识中,哪些地方用到过加法交换律(验算加法时)

  课件演示876+1924

  4.思考题,拓展规律

  下面这个等式应用了加法交换律吗?

  课件出示3+4+5=4+3+5

  在三个数相加里面,我们也可以用加法交换律

  运用加法交换律,在括号里填上适当的数

  355+423=423+()

  258+( ) =340+()

  a+268=268+( )

  35+42+65=35+()+( )

  总结:这节课上,同学们个个表现都很棒,积极思考,踊跃回答问题,学习热情不断高涨,数学家们总结的规律,我们也能发现,同学们真棒,想一想我们探索加法交换律的过程,你有什么收获呢?

交换律教学设计2

  教学内容:

  九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。

  教学要求:

  1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

  3.增强合作意识,激发学生学习数学的兴趣。

  教学过程:

  一、猜谜引入

  1.猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

  生:(积极举手,低声喊)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

  2.提问:用字母如何表示加法交换律、结合律呢?

  适时板书:a+b=b+aa+b+c=a+(b+c)

  3.设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

  [评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

  二、猜测验证

  1.猜一猜:乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:

  2.提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  3.学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  [评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

  4.交流。

  (1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

  提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

  提问:你能用自己的语言描述一下乘法交换律吗?

  生:两个数相乘,交换乘数的位置,积不变。

  师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

  师:和你们说的有什么不同?

  生1:我们说的是乘数,但书上说的是因数。

  生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

  师:会用字母表示吗?板书:ab=ba)。

  电脑出示练习十七第2题。

  师:请你判别一下,有没有运用乘法交换律?并说明理由。

  [评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

  (2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。

  生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

  生6:我们是用算式来说明的.,如:(3467)23=34状6723)。

  提问:同学们能用自己的语言描述一下乘法结合律吗?

  生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

  师:你说得很准确,有什么好方法帮助记忆?

  生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

  生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

  师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)

  [评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

  5.比较加法运算定律和乘法运算定律。

  师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

  生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

  生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

  [评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]

  三、运用

  1.回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

  生:我们验算乘法时就应用了乘法的交换律。

  2.基本练习。

  3.发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

  869=()

  [评析:练习的层次鲜明,目标明确;促进学生构建新的知识网络。]

  四、小结。(略)

交换律教学设计3

  教学目标

  1、让学生在经历探索加法交换律和加法结合律的过程中,理解并掌握加法交换律和加法结合律,初步感受到应用加法运算律可以使一些计算简便。

  2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力 ,培养学生的符号感。

  3、让学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

  教学重点

  理解加法的运算律。

  教学难点

  概括加法的运算律,尝试用字母表示。

  教学过程

  一、教师适当引导,进入新知。

  二、教学加法交律。

  1、课件出示:这是同学们课外活动的情况。谁能来解决这个问题?根据学生回答,联系题意讲解,并板书:28+17=45(人),问:还可能怎样想:17+28=45(人)。

  板书算式。

  2、比较这两道算式有什么不同?

  3、得数相同的算式我们可以用等号把它们连成等式。

  4、举例:你能再说出几个这样的等式吗?自己写一写。学生说,老师相机板书等式,并追问:介绍一下你是怎么写的`?核实是否相等。

  5、概括规律:仔细观察,有什么规律?根据学生回答,相机引导发现规律。

  6、用自己喜欢的方式表示这个规律?可适当提示:用符号、文字、字母

  学生思考,充分发表自己意见,教师给予肯定。

  7、数学上,我们一般用a、b表示两个加数,可以写成:a+b=b+a.老师小结:

  引出:加法交换律(板书)

  8、小练习:填数

  三、教学加法结合律。

  1、过渡:刚才我们一起动脑,有了很多发现,大家真不简单。现在我们再来解决一个问题,看看会有哪些收获?课件出示

  2、列式解答,利用题意追问算式含义,并相机加括号表示先算。还可能先算什么?说算式含义

  3、比较这两个算式:有什么不同?什么相同?得数为什么相同?我们可以用等号连成等式。

  4、出示书上题目,说一说,算一算。

  5、概括规律:仔细观察,你有什么发现?学生回答,教师引导发现规律。

  6、你能不能再举几个例子?学生举例。

  7、教师小结,引出:加法结合律(板书)。如果用a、b、c分别表示这三个加数,加法结合律可以表示成?

  8、小练习:填数。

  四、总结新知,组织练习。

  1、刚才我们学习了加法交换律和加法结合律,它们都是运用在加法中的规律。师总结。

  2、课后练习:

  (1)下面等式各应用了什么运算律?学生说一说,对第三道重点分析,引出加法运算律有作用。

  (2)比较体会运算律的作用,知道凑整百。

  (3)凑整百小练习。

交换律教学设计4

  教材分析:

  教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算律的教学方法和学习活动可以迁移到乘法运算律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。

  学情分析:

  本节课的新知识在以前的数学学习中有相应的认知基础,学生能利用主题图的故事性,逐步生成连贯的情境,逐步生成后续的问题,通过观察比较,探究归纳的方法,理解和掌握加法运算定律,并要学会用字母来表示,由感性认识上升到一定的理性认识,遵循认知规律。反过来,新知识又促进了学生更深入地认识原来学过的知识与方法。例如,交换加数的验算方法,加法中的“凑整”计算,等等。过去只知道这样做,现在知道了它们的依据,这种“再认识”对于加深新知识的巩固和记忆,是很有帮助的`。

  教学目标:

  一、情感态度与价值观:培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

  二、过程与方法:通过观察比较、归纳的方法,来进行教学。

  三、知识与技能:

  1.引导学生探究和理解加法交换律、结合律

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点和难点:

  教学重点:引导学生探究和理解加法交换律、结合律。教学难点:加法运算的交换律、结合律在计算中的应用。

  教学过程:

  (一)导入新授

  1、出示教材第17页情境图。

  师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!

  2、获取信息。

  师:从中你知道了哪些数学信息?(学生回答)

  3、师小结信息,引出课题:加法交换律和结合律。

  (二)探索发现第一环节

  探索加法交换律

  1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”

  学生口头列式,教师板书出示:40+56=96(千米)

  56+40=96(千米)

  你能用等号把这两道算式写成一个等式吗?

  40+56=56+40

  你还能再写出几个这样的等式吗?

  学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。

  2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。

  全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。

  可以用符号来表示:△+☆=☆+△;

  可以用文字来表示:甲数十乙数=乙数十甲数。

  3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?

  a+b=b+a

  教师指出:这就是加法交换律。

  4、初步应用:在()里填上合适的数。37+36=36+()305+49=()+305

  b+100=()+b 47+()=126+()

  m+()=n+()13+24=()+()第二环节

  探索加法结合律

  1、课件出示教材第18页例2情境图。

  师:从例2的情境图中,你获得了哪些信息?

  师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?

  学生独立列式,指名汇报。

  汇报预设:

  方法一:先算出“第一天和第二天共骑了多少千米”:

  (88+104)+96

  =192+96

  =288(千米)

  方法二:先算出“第二天和第三天共骑了多少千米”:

  88+(104+96)

  =88+200

  =288(千米)

  把这两道算式写成一道等式:(88+104)+96=88+(104+96)

  2、算一算,下面的○里能填上等号吗?

  (45+25)+13○45+(25+13)

  (36+18)+22○36+(18+22)

  小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。

  集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?

  (a+b)+c=a+(b+c)

  教师指出:这就是加法结合律。

  4、初步应用。

  在横线上填上合适的数。(45+36)+64=45+(36+)(560+)+

  =560+(140+70)(360+)+108=360+(92+)(57+c)+d=57+(+)

  (三)巩固发散

  1、完成教材第18页“做一做”。

  学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。

  2、下面各等式哪些符合加法交换律,哪些符合加法结合律?(1)470+320=320+470(2)a+55+45=55+45+a(3)(27+65)+35=27+(65+35)(4)70+80+40=70+40+80(5)60+(a+50)=(60+a)+50(6)b+900=900+b

  3、下面的算式运用了哪些加法运算定律?

  4、课本P19练习1至5

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。

交换律教学设计5

  教材分析

  学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。

  1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方

  本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。

  学情分析

  乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。它是由学生经过自己探索得到的,在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。

  教学目标

  1,使学生理解和掌握乘法交换律,并能运用它进行验算。

  2,借助观察、比较、概括等方法培养学生的分析推理能力。

  3,培养学生运用新知识解决实际问题的能力。

  教学重点和难点

  教学重点:使学生理解并运用乘法交换律。

  教学难点:乘法交换律的熟练使用。

  教学过程

  一,猜谜引入

  1,猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。”

  让学生回答谜底(纽扣)

  师:你为什么会想到纽扣?

  生:(因为扣错纽扣了,衣服穿出去会让人笑话)

  师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?

  (要求举例说明,并用字母表示)

  2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?

  学生:可能有乘法交换律和乘法结合律。

  师:你们怎么会想到有乘法交换律和乘法结合律的?

  学生:(根据加法中的运算定律来猜的)

  师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,

  这份勇气是值得肯定的也是值得表扬的,那么你们认为什么是乘法交换律,什么是乘法结合律呢?

  (让学生说一说,能说多少就多少)

  二,验证猜想

  验证乘法交换律

  1,师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?

  你们想不想自己来亲自验证一下呢?

  好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。

  (要求:独立思考,想出自己的验证方法,把它写下来)

  每人都把自己的想法告诉自己的合作伙伴。

  比一比,看谁的验证方法最好,让他作为组代表向全班汇报。

  2,学生分组研究,教师巡视指导。

  3,汇报

  学生可能出现的情况:

  (1)我们小组经过讨论认为乘法有交换律,比如:3×5=5×3,6×2=2×6等等,两个因数的位置变了,但它们的积不变.

  (2)我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的.结果是相等的.

  (3)我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人?可以列成算式:4×9=36,也可以用9×4=36来计算.这就是说4×9=9×4,因此乘法和加法一样有交换律.

  (4)根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七二十八能算4×7=28,7×4=28.

  (5)我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.

  (6)解决问题时,一个问题可以列两个算式,.

  (7)看图列式时,一个图也可以列两个算式..

  (教师根据学生发言板出算式)

  师:(总结方法)有没有不同意见?(如有不同意见的,请认为乘法没有交换律的同学发言)

  师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的,你们一样很了不起.

  师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗?

  (两个数相乘,交换两个因数的位置,积不变)

  你们能用字母来表示这个运算定律吗?板书:a×b=b×a

  三,课堂练习

  第35页做一做

  四,课堂总结

  今天的学习你有什么收获?需要注意什么问题?

交换律教学设计6

  教学目标:

  1.能运用运算定律进行一些简便运算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的.联系,能用所学知识解决简单的实际问题。

  教学过程:

  一、基本练习

  (1)口算:

  50×2=10050×20=1000

  25×4=10025×8=20025×12=30025×40=1000

  125×8=1000125×16=200

  125×24=3000125×80=10000

  通过刚才的口算,你们很快就算出结果,你们知道在乘法运算中有三对好朋友,它们分别是谁?

  板书:5×225×4125×8

  (2)在□里填上合适的数。

  30×6×7=30×(□×□)

  125×8×40=(□×□)×□

  (3)计算:

  43×25×425×43×4

  比较两道题,在运用乘法运算定律时有什么不同?

  在讨论的基础上,启发学生总结出:第1题只应用乘法结合律把后两个数相乘,就可以使计算简便;第2题要先用乘法交换律把4放在前面,使25与4相乘,或把25放在43的后面,使25与4相乘,然后再用乘法结合律,使计算简便。

  小结:

  用乘法结合律进行简便计算有两种情况:一种是单独运用乘法结合律使计算简便,一种是两个运算定律结合使用,使计算简便。关键要掌握运算定律的内容,根据题目的特点,灵活运用运算定律。

  引导学生在对比中加以区分。

  (4)师生比赛,看谁直接说出结果速度快。

  25×42×468×125×8

  4×39×25

  (5)对比练习:

  4×25+16×25

  4×25×16×25

  (25+15)×4

  (25×15)×4

  46×25

  (40+6)×25

  49×49+49×51

  49×99+49

  (68+32)×5

  68+32×5

  学生小组分工后独立完成,再进行小组内交流。

  汇报。

  二、小结

  学生谈收获。

交换律教学设计7

  教学内容:

  北师大版第7册

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

  2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律,会运用加法交换律和加法结合律进行简便运算。

  教学难点:

  学生将实际问题抽象为用字母表示的一般规律,熟练掌握简便运算的一般规律和基本技巧。

  教学过程:

  一、创设情境,导入新课,学习加法交换律

  1、课间操时间,大家都在进行自己喜欢的体育项目,大家说说你在操场上喜欢玩什么?来看看图中的小朋友在干什么?提问:从这张图片中,你获得了哪些数学信息?

  你能提出哪些数学问题?(提示:今天主要研究加法运算)根据学生的回答,出示:①参加跳绳的一共有多少人?

  ②参加活动的一共有多少人?

  2、我们先来解决第一个问题:参加跳绳的一共有多少人?

  学生独立列式,指名回答,教师板书(28+17=45 17+28=45)仔细观察,比较一下这两个算式有什么是相同的有什么是不同的?它们的结果呢?(两个加数相同,都是28和17,加数的位置不同,计算结果相同)

  你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28为什么能用等号连接起来呢?指出:这两个算式都表示两个数相加,尽管加数的位置发生了变化,但和不变,所以可以用加号连接.你们能够自己模仿写出几个这样的`算式吗?根据学生回答,教师随机板书算式,并追问:这样的算式能写几个?

  3、我们再仔细的观察这几个算式,,两个数相加时会有什么样的规律呢?象这样的算式还有多少?也就是说任何两个加数相加都存在这样的规律.你们能结合上节课总结乘法交换律和乘法结合律的方法用一个算式来表示你们的新发现吗?

  教师巡视,并作相应的辅导,在学生交流,板书:a+b=b+a。

  4、教师小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。二.组织练习

  完成练习题。下面我们再来研究加法中的另一个规律。

  三、学习加法结合律

  1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

  2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

  3、学生回答,教师有意识地板书:

  (28+17)+23=68(人)28+(17+23)(28+23)+17=68(人)28+(23+17)让回答的同学说说这么列式是怎么思考的?

  下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

  4、那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)

  5、出示:下面的Ο里能填上合适的符号吗?(30+10)+50Ο30+(10+50)(27+23)+47Ο27+(23+47)

  6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后全班再交流,教师:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

  7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

  板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

  8、渗透简便运算。计算比赛:两位同学上前比赛,不写过程,直接写得数,看谁速度快!

  甲同学计算45+(88+12),乙同学计算(45+88)+12,30秒时间到!停笔!我宣布,甲同学快!乙同学慢!老师这样评价,你们有话要说吗?不公平!尤其是乙同学!甲同学算式中先算88加12,正好凑成100。乙同学呢?(凑不成100)能凑整的快是吗?好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25)(75+25)+48等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。原来巧用运算律还能使一些计算更简便呢!

  9、做练习题巩固知识点

  58+36+22+64= 357+288+143= 248+192+352= 129+235+171+165=

  五、课堂总结

  通过本节课的学习,你有什么新的收获?

  六、作业与思考题

交换律教学设计8

  教学内容:

  人教版小学数学四年级下册第24---25页例题,及做一做。

  教学目标:

  1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

  2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

  3、培养学生观察,比较、分析、综合、和归纳、概括等思维能力;使学生在数学活动中获得成功的体验。

  教学重点:

  探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

  教学难点:

  乘法结合律的推导过程。

  教学用具:

  课件

  教学过程:

  一、创设情境,生成问题

  1、猜谜引入

  猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”

  生:(积极举手)纽扣。

  师:你为什么会想到是纽扣?

  生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

  师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。我们来复习一下。

  出示:(1)根据运算定律在下面的()里填上适当的数。

  48+___=a+___

  61+28+72=61+(___+72)

  718+(282+6)=(718+___)+___

  (b+132)+768=___+(_____+768)

  (2)下面各题怎样计算简便就怎样计算。

  78+29+22。”79+145+21

  师:说说怎么计算?运用了什么运算定律?(加法交换律和加法结合律)

  师:怎么用字母如何表示加法交换律、结合律呢?

  板书:a+b=b+aa+b+c=a+(b+c)

  3、设置疑问,引入新课。

  加法运算定律有加法交换律和加法结合律,在其它运算中,是不是也存在这样的规律呢?请同学们大胆猜想一下,乘法中会有什么定律?

  二、探索交流,解决问题。

  活动一:探索乘法交换律

  1、猜一猜:乘法可能有哪些运算定律?

  生1:乘法可能有交换律。

  生2:乘法可能有结合律。

  生3:……

  2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

  3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

  4、交流。

  (1)生1:我们小组经过讨论认为乘法有交换律。比如:2×3=3×2,0×8=8×0等等。两个因数的位置变了,但它们的积不变。

  生2:我们也是找了两个数,将它们相乘,发现两个因数的位置变了,但它们的结果是相等的。

  生3:我们小组也认为乘法有交换律,比如我们班有5个小组,每个组有8人,求一共有多少人?可以列成算式:5×8=32,也可以用8×5=32。这就说明5乘8等于8乘5。因此,乘法和加法一样,也有交换律。

  师:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

  生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如“300×

  师:你能用自己的语言描述一下乘法交换律吗?

  生:两个数相乘,交换因数的位置,积不变。

  师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

  师:会用字母表示吗?板书:a×b=b×a。

  5、师:学习乘法交换律有什么作用?

  生:乘法交换律的作用有很多,第一:它可以用来验算乘法。第二、它还可以比较两个式子的大小。第三、还可以让有些算式变得简单易算。

  活动二:探索乘法结合律。

  师:乘法是否还有其他运算定律呢,我们一起接下去研究看看。同学们,窗外树木新发的嫩芽正提醒着我们,现在已经是春季,细雨滋润大地,万物复苏,正是植树造林的好时机。最近我们学校也组织同学们参加植树活动,很多同学们都积极地响应学校的号召。

  1、出示例题2:

  同桌讨论,你们是怎样计算的?

  生1:先算出一共种了多少棵。

  (25×5)×2=125×2=250(人)

  生2:先算每组要浇多少桶水。

  25×(5×2)=25×10=250(人)

  2、全班交流

  (1)师:我们来观察两位同学的做法,你有什么发现?

  比较等号两边的算式,有什么相同点和不同点?

  生1:结果相等。

  生2:第二个算式中有括号,第一个算式中没有。

  (2)猜想:是不是具备这种形式的'两个算式结果都相等?这会不会是乘法中的一个规律?

  生1:是。

  生2:可能是。

  ……

  师:同学们猜测的对不对呢?我们需要进行—验证。怎样验证呢?(让学生先思索一会儿)

  生:随便说两个算式,一个不带括号,一个带括号,算出结果,看是否相等。

  师:同学们觉得呢?---可以。

  师:通过一组算式就能验证吗?

  生:不能,要多举几个例子。

  师:说得真好。下面就来验证一下。

  (3)学生举

  比较这几组等式,你发现了什么规律,把你的发现与同桌交流。

  师:能用自己的语言描述一下你发现的规律吗?

  结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(师:这就是乘法结合律)

  师:你说得很准确,有什么好方法帮助记住这乘法结合律吗?

  (4)师:怎样用字母表示乘法结合律?

  板书:(a×b)×c=a×(b×c)

  (5)师:有什么好方法帮助记忆?

  生:我发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”,它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。

  师:这个记忆方法确实很好,我们大家一起来试一试。三、巩固应用,内化提高。

  师:刚才我们已经验证了在乘法中确实存在交换律和结合律,接下来老师要考考大家能否正确运用乘法运算定律解决问题。

  1、学生在空格里填上适当的数使等式成立,然后同桌说说运用了什么乘法运算定律。

  15×16=16×()

  (60×25)×  =60×(  ×8)

  125×(8×  )=(125×  )×14

  3×4×8×5=(3×4)×(  ×  )

  25×7×4=  ×( ×4)

  同学们互相讲填写的依据,以检查学生是否理解了乘法交换律和结合律。订正时重点分析最后一小题,乘法结合律并非为了用而用,更要考虑使计算简便。

  2、计算23×15×25×37×2

  放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

  通过实际操作计算,进一步利用乘法运算定律进行简便计算,从理解上升到运用。

  师:运用了乘法的运算律,计算时你有什么体会?

  3、思考题:用简便方法计算。

  36×25125×32

  例。6=6×300

  学生的方法很多:36×25=25×4×9=5×6×5×6=、、、、、、

  四、回顾整理,反思提升

  通过这节课的学习,你有什么收获想和大家分享一下呢?

  板书设计:

  乘法运算律

  乘法交换律乘法结合律

  3×5=5×3(25×5)×2=25×(5×2)

  7×8=8×7(12×5)×4=12×(5×4)

  9×8=8×9(35×8)×7=35×(8×7)

  a×b=a×b(a×b)×c=a×(b×c)

交换律教学设计9

  教学内容 :课本34页例1、例2。

  教学目标

  1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  教学难点:

  1、能灵活运用乘法交换律和乘法结合律解决简单的实际问题,提高计算能力。

  2、能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

  教学过程

  一、自主学习

  (一)出示自学提纲

  1、乘法交换律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  2、乘法结合律的内容是什么?用字母式子怎样表示?你能再举出一些这样的例子吗?

  3、比较加法交换律与乘法交换律,加法结合律与乘法结合律,你发现了什么?

  (学生在自学过程中,教师巡回指导,并告诉学生在看不懂的地方要做上标记)

  (二)学生自学

  (三)自学检测

  计算下面各题,怎样简便就怎样计算。

  23×4×5 8×(125+11) 2×289×5

  二、合作探究

  1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)

  2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)

  (1)在运用乘法运算定律进行计算时应注意什么?

  (2)你会用简便方法计算下列各题吗?

  45×12 125×16 250×64

  三、达标训练

  1、下列各式运用了乘法的'交换律,对吗?为什么?

  100×9=9×100 2×18=2×18 a+b=b+a

  2、先口算,再把得数相同的两个算式用等号连接起来。

  (6+4)×5 6×4+4×5

  (8+12)×4 8×4+12×4

  8×(7+3) 8×7+8×3

  3、在下列方框中填上适当的数。

  30×6×7=30×(□×□)

  125×8×40=(□×□)×□

  4、用简便方法计算。

  69×125×8 25×43×4 13×50×4 25×166×4

  课堂小结:通过本节课的学习,你都学会了哪些内容?你有哪些收获?你还有疑问吗?

  四、堂清检测

  1、判断。

  (1)4×(25×3)=(4×25) ×3 ( )

  (2)7×(18×40)=7×(40×18) ( )

  (3)(7×8)×125×15=7×(8×125)×15 ( )

  2、计算。

  (1)13×50×4

  (2)25×166×4

  (3)8×5×125×40

  (4)125×32×5

  3、解决问题。

  每袋有5个乒乓球,每排有4袋,放了2排,一共有多少个乒乓球?

  板书设计

  乘法交换律和乘法结合律

  (1)负责挖坑、种树的一共有多少人? (2)一共要浇多少桶水?

  25×4=100(人) 4×25=100(人) (25×5)×2 25×(5×2)

  25×4=4×25 =125×2 =10×25

  ┆(学生举例) =250(桶) =250(桶)

  (25×5)×2=25×(5×2)

  ┆(学生举例)

  交换两个因数的位置,积不变。 先乘前两个数,或者先乘后两个数,

  这叫做乘法交换律。 积不变。这叫做乘法结合律。

  a×b=b×a (a×b)×c=a×(b×c)

交换律教学设计10

  设计理念:生活经验是小学生学习数学的宝贵财富,也是他们进行数学探索的基础。教师应充分利用学生已有的生活经验,让他们在此基础上实现对数学的再创造,切实体验数学与生活的联系,经历数学知识发生、发展和形成的过程,提高学生应用数学解决实际问题的'能力。

  教材分析:教材从情境引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律,使学生经历由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。

  教学目标:探索和理解加法交换律,并能够用字母来表示加法交换律;经历探索运算定律过程,通过对实际问题的解决,进行比较和分析,发现并概括出加法交换律;在数学活动中获得成功的体验,培养学生独立思考和探究问题的意识和能力。

  教学准备:多媒体课件。

  教学过程:

  一、在情境中初步感知规律

  1.导入故事《朝三暮四》,引发学生思考。根据学生回答板书:

  3+4=7(个)4+3=7(个)3+4=4+3

  2.创设问题情景。出示主题图,引导学生观察,图中告诉了我们哪些信息?我们要解决的问题是什么?

  3.尝试解决问题。学生独立解决问题,根据学生解答板书:

  40+56=96(千米)56+40=96(千米)40+56=56+40

  引发猜想:是否任意两数相加,交换位置,和都不变?

  二、在举例中验证规律

  1.交流:有了猜想,我们还得验证。你打算怎么验证?

  2.学生举例验证,教师巡视指导。

  三、在比较中概括规律

  1.同学们仔细观察列举出的等式,说一说你发现了什么?你能用自己的话说出你发现的规律,并给它命名吗?(两个加数交换位置,和不变。这叫加法交换律。)

  2.让学生用自己喜欢的方式表示加法交换律。用语言表达加法交换律比较麻烦,怎样表示既简单又清楚呢?试一试,用你喜欢的符号、字母或图形表示两个加数。

  四、在类比中拓展规律

  1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。

  2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。

  3.交流:哪一种猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。

  4.探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能推翻猜想?

  五、在应用中深化规律

  1.请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

  2.下面我们就来比一比,看谁学得最好。

  (1)你能在括号里填上合适的数吗?

  300+600=()+()()+55=55+420 ()+65=()+35

  (2)仔细看一看,下面的算式符合加法交换律吗?

  270+380=380+270 b+800=800+b

  (3)运用加法交换律,你能写出几个算式?写写试试吧。

  25+49+75=()+()+()

  学生写出算式以后,让学生观察这些算式,哪两个数交换了位置?在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

  六、在反思中深化理解

  通过这节课的学习,你有哪些收获?说一说自己表现最好的方面。

交换律教学设计11

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,学生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万平方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的.学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

  (自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万平方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  学生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

交换律教学设计12

  ◇教学内容:

  义务教育课程标准实验教科书四年级数学.下册P28-29页内容。

  ◇教学目标:

  1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

  2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。

  3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

  ◇教学重点:

  理解并掌握加法交换律和加法结合律,能用字母来表示。

  ◇教学难点:

  经历探索加法交换律和结合律的过程,发现并概括出运算规律。

  ◇教学准备:

  多媒体课件

  ◇教学过程

  一、谈话导入,鼓励猜想

  1、出示图片牛顿与“万有引力”

  2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。

  二、合作交流,探索猜想

  (一)故事激趣,初次猜想

  1、朝三暮四

  猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?

  2、初步感知,大胆猜想

  出示:3+4=4+3

  师:仔细观察这两个加法算式,你发现了什么?

  得出:两个加数交换位置,和不变。(适时板书)

  (二)广泛举例,验证猜想。

  师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)

  师:既然是猜想,想不想知道猜的对不对?

  生:想。

  师:我们还得举例验证。

  1、举例要求:

  (1)任意两个数,求出他们的`和;

  (2)交换两个加数的位置,再求出两个数的和:

  (3)比较两次的结果,判断式子是否相等。

  2、学生汇报,师板书。

  3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)

  4、揭题:大家发现的这个规律叫什么呢?

  学生交流后,师板书。

  5、用字母表示加法交换律。

  (1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。

  (学生可能使用文字,图形,符号等方式)

  (2)用字母表示加法交换律:a+b=b+a

  6、追问:加法交换律中,什么变了,什么没有变?

  7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)

  (3)出示教材56页的例题情境图。

  解决:跳绳的有多少人?

  28+17=45(人)17+28=45(人)

  (三)规律延伸,猜想拓展。

  1、根据反思,拓展规律。

  师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?

  生可能会说出以下几个想法?

  “猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”

  “猜想五:几个加数时,变换加数的位置和也不变?“

  2、举例探究,验证猜想。

  师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

  3、汇报交流,验证猜想。

  师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结

  小结:a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:b、只要能举一个反倒,就能验证猜想肯定不成立。

  (2)验证猜想三。

  师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。

  (3)验证猜想四

  师:哪些同掌选择了“猜想四”,又是怎样做的?

  学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。

交换律教学设计13

  教学目标

  1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。

  2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水平,进一步发展符号感。

  3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。

  教学过程

  一、复习旧知、导入新课

  1.出示:

  你能在下列的 内填上合适的数吗?

  28+320=320+ ;

  (27+138)+62=27+( + );

  35+ = +35。

  提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?

  2.出示:

  在下列○内填上合适的运算符号。

  4○10=10○4 (2○3)○5=2○(3○5)。

  谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?

  3.导入新课。

  谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?

  【说明:加法的交换律和结合律是学生学习乘法交换律和结合律的基础,通过复习填数和在等式中填运算符号,一方面可以唤起学生对加法运算律的回忆,另一方面可以引起学生的联想和思考:加法有交换律和结合律,乘法是不是也有交换律和结合律呢?从而有效激发学生主动探究乘法运算律的欲望。同时,引导学生把加法运算律的活动经验和学习方法迁移到乘法运算律的学习中来,促进主动学习。】

  二、举例验证探索规律

  (一)探索乘法交换律。

  1.情景中感知乘法交换律。

  出示例题。(略)

  谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?

  学生列式:3×5=15(人)或5×3=15(人)。

  提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?

  板书:3×5=5×3。

  【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】

  2.举例验证。

  谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?

  学生举例。

  引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?

  学生交流,教师选择一些等式板书。

  电脑验证大数相乘的结果。

  谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。

  3.总结规律。

  讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)

  板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。

  提示:你能像加法交换律一样用字母来表示乘法的交换律吗?

  板书:a×b=b×a。

  提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?

  【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】

  4.回忆乘法交换律在过去学习中的运用。

  谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)

  【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】

  (二)探索乘法结合律。

  1.初步感知。

  谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。

  出示例题。(略)

  谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?

  组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。

  2.引导比较。

  提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)

  提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)

  板书:(5×3)×4=5×(3×4)。

  3.举例验证。

  谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。

  组织交流,教师有选择地板书一些等式。

  4.总结规律。

  讨论:

  (1)你发现等号两边的算式中什么不变,什么变了?

  (2)你能从这些算式中发现什么规律?

  师生共同归纳乘法结合律。

  板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。

  谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?

  板书:(a×b)×c=a×(b×c)。

  【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的'积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】

  三、尝试运用理解规律

  1.做“想想做做”第1题。(略)

  2.尝试简便运算。

  谈话:根据我们学习加法运算律的经验,想一想,学习乘法交换律和结合律,对我们的学习会有什么帮助呢?现在就让我们用学到的乘法运算律来进行简便运算吧!

  出示第62页的“试一试”,学生尝试简便运算。

  指名学生板演。

  评讲:你能说出计算时运用了乘法的什么运算律吗。

  小结。(略)

  【说明:通过教师富有启发性的谈话,引导学生自觉推想乘法运算律的价值,并通过实践获得体验,使学生顺利地把在加法运算中学到的简便方法迁移到乘法的简便运算中来。】

  四、巩固练习拓展提高

  1.做“想做做做”第2题。

  观察:你发现每一组题的上、下两道算式有什么联系?

  谈话:每组的两道题,你可以任选一道题进行计算,看谁既会选又会算!

  提问:你能说出算得又对又快的理由吗?

  【说明:让学生不计算发现上下两道题的异同,并给学生选择算一道题的权利,既顺应了学生自觉“求简”的学习需要,又使应用乘法运算律进行简便运算成为学生的主动追求和自觉行为。】

  2.做“想想做做”第3题。

  谈话:你运用乘法的运算律使计算简便吗?比一比谁算得又对又快!

  组织交流。

  3.用简便方法计算。

  25×6×4×15 25×125×32

  学生练习后,组织交流。

  五、引发联想,鼓励探究

  谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?

  127-53-27 218-69-31

  127-27-53 218-(69+31)

  72÷3÷8 54÷3÷2

  72÷8÷3 54÷(3×2)

  【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】

交换律教学设计14

  教学内容:

  第56—第58页

  教学目标:

  1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算。

  2、在探索规律的过程中发展学生的分析比较抽象概括能力,培养学生的符号感。

  教学设计:

  明确今天的教学内容板书:运算律。

  简介运算律的含义:即运算过程中发现的规律。

  一、教学加法交换律:

  1、出示例题画面,由学生仔细观察画面并根据题中所提问题(跳绳的有多少人)选择相关条件并进行解答。

  2、学生交流各自的解法,说说列式的理由。

  板书:28+17男生跳绳人数+女生跳绳人数。

  17+28女生跳绳人数+男生跳绳人数。

  3、比较两式结果,总结规律。

  4、由学生说出他们的发现:你还能举出这样的`例子吗。

  5、比较两式异同点,明确式中各部分的名称,逐步导出规律:两数相加,交换加数的位置,它们的和不变。

  6、说明这样的例子举不胜举,太多太多,为了简明表示出这一规律,我们用一个字母式子表示为a+b=b+a,明确这里的a,b分别代表两个数,等号表示"不变"。

  二、数学加法结合律的条件(通过例题发现规律)

  1、根据例题的条件,你能求出参加活动一共有多少人吗各自列出算式:

  2、交流解题方法,明确算理。

  (28+17)+23 28+(17+23)

  由学生分别算出结果,并比较异同,明确虽然顺序不一样,但结果相同,说明这也是一种规律,由各人再举出例子试试,看这一规律是不是具有普遍性。

  4、总结归纳这一规律,并学习用字母表示。

  5、明确两规律的名称。

  三、组织练习

  1、做第58页想想做做第1题,说出每一个等式各运用了什么运算定律。

  2、做第2题,让学生先填一填,再说出各是怎么想的

  3、完成第4题,说出每组题中哪种方法简便,为什么

  4、完成第5题。

  四、全课总结

  1、由学生说说本节课的收获。

  2、教师总结及要求

  这节课我们学习加法运算中的两种运算规律,要能准确说出它们的字母表达式,并明白其含义。关于学习它有什么作用,下节课我们再作进一步研究。

  教学反思:

  通过学习这节课的教学,我有这样的想法:

  1、四年级组的学生已具备一定的观察,分析,思考的能力,教学过程中要注意充分利用,引领他们去思考分析培养和提高这方面的能力。

  2、课堂上留给学生自主的空间,能够易于让学生发现和理解相关知识,有利于激发和调动他们学习的兴趣。

交换律教学设计15

  一、教学内容

  北师大版教材四年级上册第三单元中的〈〈探索与发现(二)〉〉。

  二、教学目标

  1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

  2、在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。

  3、感受数学探索的乐趣,培养自主探究问题的能力。

  三、教学重、难点

  1、重点:探索、发现、理解和应用乘法结合律和交换律。

  2、难点:乘法结合律和交换律的探索过程。

  四、教具准备

  一些小长方体

  五、教学过程

  (一) 口算比赛,激发学习兴趣

  1、出示口算题

  2×5 5×14 25×4 125×8 36×25

  2、谈话引入

  师:他们怎么计算那么快呀?是不是有什么规律呢?这节课我们就一起来探索发现吧!

  3、板书课题。

  (二) 创设情境,发现问题

  1、动手操作

  师生共同用小长方体搭一个和教材上一样的.大长方体。

  2、估一估

  师:请大家认真观察,估一估这个长方体是由多少个小长方体搭成的?

  学生独立观察,思考后集体交流。

  3、算一算

  师:谁估计的准确呢?请同学们在本子上算一算。

  学生独立思考,计算。

  4、交流算法

  师:谁愿意把你的办法介绍给大家?

  学生汇报,师板书:(3×5)×4=60 3×(5×4)=60

  5、比一比

  师:比较这两个算式,你发现了什么?

  生:…

  (三)提出假设,举例验证

  1、 提出假设

  师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

  2、 学生举例

  小组内互相交流,教师巡视指导。

  3、 集体交流

  师:谁愿意介绍一下你们小组举例的情况?

  生:…

  (四)概括规律

  师:从刚才大家所举的例子来看,每一组的结果都是相同的。那么从中你能发现乘法运算中的规律吗?

  学生同桌交流后反馈。

  师:这样的例子多不多?(多)能举完吗?(不能)

  师:那么我们就用字母a、b、c分别表示乘法算式中的任意三个数字,你能写出这个规律吗?

  生:…

  生说师板书:(a × b) ×c=a ×(b × c)叫做乘法结合律

  (五)运用规律,解决问题

  1、比较(3×5)×4=60 3×(5×4)=60两个算式的计算过程,哪个更简便?

  师:看来运用乘法结合律可以使一些计算简便。

  2、出示38×25×4

  师:能用乘法结合律使这道题计算简便吗?

  学生试做,教师指导。

  3、独立计算:42×125×8

  (六)探索乘法交换律

  1、出示一组数据

  4×5=5×4 12×10=10×12 6×7=7×6

  师:认真观察,你发现了什么?

  生:…

  2、学生举例验证,发现规律

  3、用字母来表示,生说师板书:a×b=b×a

  (七) 运用模型,完成练习

  1、“练一练”第1题。

  学生独立做题后集体交流。

  2、“练一练”第2题。

  学生独立做题后展示评比。

  (八)课堂小结

  师:这节课你有什么收获?

  学生自由发言。

【交换律教学设计】相关文章:

《加法交换律和结合律》教学设计05-29

“加法的交换律和结合律”教学设计04-19

加法交换律和结合律教学设计04-23

《加法交换律和结合律》教学设计优选【9篇】05-29

装帧设计教学设计04-19

设计校园教学设计04-14

经典教学设计06-22

教学设计07-13

学与问教学设计搭配的学问教学设计11-19