我要投稿 投诉建议

《比的基本性质》教学设计

时间:2024-08-17 17:13:20 教学设计 我要投稿

(优秀)《比的基本性质》教学设计15篇

  作为一位无私奉献的人民教师,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。那么什么样的教学设计才是好的呢?下面是小编为大家收集的《比的基本性质》教学设计,欢迎大家分享。

(优秀)《比的基本性质》教学设计15篇

《比的基本性质》教学设计1

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

  3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

  教学重点:

  理解并掌握比例的基本性质。

  教学难点:

  引导观察,自主探究发现比例的基本性质

  设计理念:

  本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

  教学过程:

  一、从知识的矛盾冲突中导入并引入。

  3:8=9:( ) 0。5:( )=5:17

  制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)

  师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)

  你还想知道教师内谁的生日,请他告诉你。(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)

  二、探索发现新知。

  1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)

  学生回报,师完成板书:

  (注意板书的时候教师的手势要指明确到位)

  2、练习:请指出下列比例的两个外项和内项各是多少?

  80:2=200:5

  6:10=9:15

  1/2:1/3=6:4

  0。2:2。5=4:50

  2。4:1。6=60:40

  3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的.具体一些。

  带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。

  4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)

  回到板书例题验证:两个外项的积是:3×24=72

  两个内项的积是:8×9=72

  5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。

  6、完成板书:在比例里,两个外项的积等于两个内项的积

  如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。

  三、基本练习。

  1、应用比例的基本性质,判断下面两个比是否能组成比例。

  (1)6:3和8:5

  (2)1∶5和0。8∶4

  (3)1/3:1/4和12∶9

  (4)1。2:3/和4/5:5

  (注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)

  2、在括号里填上适当的数

  (1)12:3=( ):5

  (2)( ):1/3=1/4:1/6

  (3)0。2:0。6=6:( )

  (4)4:3=80:( )

  3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?

  4、把5、3、4、8这四个数换掉其中的一个,组成比例。

  5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。

  6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。

  四、全课总结:

  谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)

《比的基本性质》教学设计2

  教学目标:

  1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  教学重点:

  1、理解比的基本性质。

  2、运用比的基本性质进行化简比。

  一、探究新知

  (一)比的基本性质

  1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)

  (1)4人小组交流(2)全班交流

  (3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

  (4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

  2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的'基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

  3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?

  4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

  5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

  (二)化简比---完成练习题(后附)

  1、小组交流

  2、全班交流

  小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

  结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

  二、巩固练习

  1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

  2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

  3、拓展练习

  3:8=(3+6):(8+)

  (让学生分小组讨论方法)

  三、课堂总结

  这节课有哪些收获?师生共同总结。

  ()年()班姓名

  比的基本性质小研究

  你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

  方法一

  方法二

  方法三

  方法四

  我的发现:

  聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

  序号

  比

  我的方法

  (写出过程)

  1

  14:21

  2

  36:15

  3

  1/6:2/9

  4

  2/3:3/4

  5

  1.25:2

  6

  5.6:4.2

  我的发现:

《比的基本性质》教学设计3

  教学目标:

  情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

  知识技能:理解分数的基本性质,并且能够灵活应用。

  过程方法:动手操作、观察、讨论

  教学重、难点:理解并掌握分数的基本性质并灵活应用。

  教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

  学具准备:拼图12组。

  教学设计理念:

  《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

  教学过程:

  一、 创设情境,激趣导入。

  设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

  师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

  请看拼图要求:1、用所给材料拼成三个完全一样图形。

  2、用分数表示阴影部分占整幅图的几分之几,并写出来。

  二、合作交流,探究规律。

  设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

  (一)拼图,写分数。

  (1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

  (2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )

  (二)找分数间的大小关系。

  (1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

  (2)汇报:每组中三个分数大小相等。

  比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

  (三)探究规律

  (1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

  (2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

  (3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。

  (4)师结合图依据分数的意义讲解变化规律。

  (5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

  (四)对比分数的基本性质和商不变的性质。

  学生对比,说出两个性质间的'区别与联系。

  三、应用。

  设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

  1、填空

  (1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

  2、比较 和 的大小。

  四、游戏"找朋友”。

  设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

  同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

  ,五年级数学分数的基本性质教学设计

《比的基本性质》教学设计4

  教学要求

  ①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  ②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

  一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  板书:====

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的.性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。教师板书:

  ====

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

  这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

  2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。

  3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。

《比的基本性质》教学设计5

  教学目标

  1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

  2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

  教学重、难点:

  理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

  教学过程:

  一、复习旧知,了解学习起点

  二、创设情境,激趣引入

  课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的`问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?

  三、探究新知,揭示规律

  1.动手操作,形象感知。

  (1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。

  (2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。

  (3)剪。把圆中的阴影部分剪下来。

  (4)比。把剪下的阴影部分重叠,比一比结果怎样。

  2.观察比较,探究规律。

  (1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)

  (2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。

  学生汇报后,教师用电脑演示。

  把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”

  (3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)

  (4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

  (5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)

  讨论题:

  ①它们之间有什么关系?它们的什么变了?什么没有变?

  ②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?

  (6)学生汇报,师生讨论情况。

  师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。

  师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)

  从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。

  (7)抓住焦点,辨中求真。

  的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。

《比的基本性质》教学设计6

  一、教学设计理念:

  这节课的目标定位分为三个层面:

  本节课我设计了五个环节:

  ①变教学生学会知识为指导学生会学知识;

  导入新课

  师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??

  【三维目标】:

  一、知识与技能

  二、过程与方法

  本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。

  三、情感、态度与价值观

  1.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

  【三维目标】:

  一、知识与技能

  二、过程与方法

  三、情感、态度与价值观

  1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

  二、重点、难点解读

  三、知识点精析

  一、教学目标

  1.知识与技能

  探究基本不等式的证明过程,初步理解基本不等式

  2.过程与方法

  通过对基本不等式的不同角度的探究,渗透数形结合及转化的数学思想.

  3.情感、态度与价值观:

  三、教学资源普通高中数学课程标准(实验)人教a版教材必修5

  中学数学周刊20xx年第10期百度

  四、教学方法与手段

  启发学生探究,多媒体辅助教学

  五、教学过程

  (一)创设情境:

  你能在这个图中找出一些相等关系或不等关系吗?

  设计意图:创设问题情境,为问题的'引出做铺垫

  (二)新知探究:图1

  将风车抽象成图2

  当直角三角形变为等腰直角三角形,图2

  即时,正方形efgh缩为一个点,这时有

  2.过程与方法:通过实例探究抽象基本不等式;

  【教学重点】

  应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;

  【教学难点】

  基本不等式等号成立条件

  【教学过程】

  1.课题导入

  基本不等式的几何背景:

  教师引导学生从面积的关系去找相等关系或不等关系

  2.讲授新课

  1.探究图形中的不等关系

  将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。

  当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有。

  2.得到结论:一般的,如果

  3.思考证明:你能给出它的证明吗?

《比的基本性质》教学设计7

  教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

  教学重点:理解比例的意义和性质。

  教学难点:应用比例的意义和性质判断两个比能否组成比例。

  教学准备:多媒体课件一套。

  教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2.4米,宽1.6米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的`大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2.4∶1.6 =3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2.4∶1.6 =60∶40

  2、认识比例,知道比例各项的名称。

  ⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

  ⑵学生尝试说说什么叫比例。

  ⑶教学比例的各部分的名称。

  自学课本第34页的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

  ⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

  ⑸判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

  ⑴6∶10和9∶15 ⑵20∶5和1∶4

  ⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4

  ⑹思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

  ⑴媒体出示

  8∶4=()∶() 15:10=()∶4 12∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

  ⑵师提出问题:在一个比例中,它们项有什么特点?

  ⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

  ⑷集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

  ⑸观察自己写的其它几个比例,验证发现。

  ⑹小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例

  ⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50

  ⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

  板书设计:

  比例的意义和基本性质

  2.4∶1.6 =3/2

  60∶40=3/2

《比的基本性质》教学设计8

  教材分析

  1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

  2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

  学情分析

  学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。

  因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

  教学目标

  经历探索分数基本性质的过程,理解分数基本性质。

  能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  教学重点和难点

  理解分数基本性质,能运用分数基本性质转化分数。

  教学过程

  一、复习导入

  二、探究新知

  实践操作,探究规律

  观察发现:初步概括分数基本性质

  括归纳分数基本性质

  三、课堂练习

  四、课堂小结

  出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

  提出问题: 这些分数都相等吗?

  观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

  分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

  1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4

  通过这节课的学习、你学会了那些知识

  口答

  小组讨论

  拿出准备好的圆形纸片,折一折,画一画、涂一涂

  小组讨论、交流

  小组讨论、交流

  做练习,完成后集体交流。

  说说,读分数基本性质

  复习旧知,为学习新知识作铺垫。

  将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

  让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的'大小却相等。

  引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

  在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

  让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

  对本节课的所学知识的回顾,及所学知识点的总结。

  板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

  教学反思:

  分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。

  在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。

《比的基本性质》教学设计9

  一、教材分析

  等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。同时培养学生数学思维能力。

  二、教学目标:

  知识与技能:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。

  过程与方法:在用算式表示实验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。

  情感态度价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。

  三、教学重点是:

  引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。

  教学难点是抽象归纳出等式的基本性质。

  四、教学程序(分三部分教学)

  (一)联系实际,激趣引入

  首先激发探究兴趣:提出问题:“同学们,你用天平做过游戏吗?”这节课我们就利用天平一起来探索天平游戏中所包含的数学知识。”

  (二)自主探索,合作交流

  学习等式的基本性质1

  1、具体情境,感受天平平衡

  利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。

  图1、图2的教学模式:先让学生观察,问:你发现了什么?然后提问:怎样变换,能使天平仍然保持平衡呢?待学生思考片刻,再进一步提问:往两边各放1个杯子,天平会发生什么变化?生口答,验证。接下去,继续提问:如果两边各放上2个茶杯,天平还会保持平衡吗?两边各放上同样的一把茶壶呢?生答,再一一演示验证。

  图3、图4的教学模式和前面一样。

  板书如下:

  2、总结抽象,认识规律

  通过上面的观察,先用一句话归纳图1和图2的内容。(1、等式的两边都加上或减去相同的数,等式不变。)再以第一句话为基础归纳出图3和图4的内容。(2、等式的两边都乘或除以相同的数(0除外)等式不变。)

  教师指出这是等式的`一个非常重要的性质。板书:等式的基本性质

  (三)巩固练习,深化认识

  练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,培养了学生的灵活性,使学生获得成功的满足感。

  1、根据图(1)在下面每幅图的括号里填上适当的符号或数字,使天平平衡。

  2、课堂作业。(当堂完成)

  填一填。(a、b均不为0)

  (1) 如果x+a=b,那么x+a-a=b○

  (2) 如果x-a=b,那么x-a+a=b○

  (3) 如果ax=b,那么a x÷a=b○

  (4) 如果x÷a =b,那么x÷a×a=b○

  3、拓展训练。

  五、最后,关注学生的学习体会和感受,提出:通过本节课的学习你有什么收获?

《比的基本性质》教学设计10

  【教学内容】

  义务教育教科书六年级上册第50-51页。

  【教学目标】

  1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。

  2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。

  【教学难点】

  理解并掌握比的基本性质。

  【教具学具】

  课件。教学过程:

  一、回顾旧知。

  1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”

  2、比与除法和分数有什么关系?

  比前项:(比号)后项

  比值除法

  被除数÷(除号)除数商分数

  分子-(分数线)分母分数值

  二、探究新知。

  探究一:比的基本性质

  1、同学看这个除法算式:

  它们是正确的吗?为什么?运用了除法的什么性质?

  2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?

  3、根据比与分数的关系,我们还能怎么研究比的规律?

  【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】

  4、即时练习,强化巩固

  在比的基本性质中,大家觉得要注意什么?让我们一起来看看:

  (1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)

  (2).判断并说明理由。

  (1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5

  探究二:根据比的性质我们能做什么?(化简比)

  1、明确什么是“最简整数比”。出示一些比,让学生说说哪些是整数比,哪些是最简整数比。

  2、出示例题,明确问题。

  例1:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?

  分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)

  学生总结方法:整数比化简就是比的前项和后项同时除以它们的`最大公因数。

  那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。

  3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?

  出示例题,全班讨论猜想。学生独立完成。

  集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”

  1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8

  探究三:一个比中有分数,又有小数该怎么化简呢?

  3出示0.125:,学生讨论,汇报结果。

  8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】

  三、强化新知,达标检测。

  通过数学课本51页“做一做”,强化认识。32:1648:400.15:0.35173::66128

  【设计意图:强化训练】

  四、总结评价

  这节课你有什么收获?还有什么疑问?

《比的基本性质》教学设计11

  教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。

  教学目标:

  1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

  2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  教学重点:理解比的基本性质

  教学难点:正确应用比的基本性质化简比

  教学准备:课件,答题纸,实物投影。

  教学过程:

  一、 复习引入

  1.师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  2.你能直接说出700÷25的商吗?

  (1)你是怎么想的?

  (2)依据是什么?

  3.你还记得分数的基本性质吗?举例说明。

  【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

  二、新知探究

  (一)猜想比的基本性质

  1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

  预设:比的基本性质。

  2.学生纷纷猜想比的.基本性质。

  预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

  (二)验证比的基本性质

  师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  1.教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

  预设:根据比与除法、分数的关系进行验证;根据比值验证。

  3.全班验证。

  教学总结

《比的基本性质》教学设计12

  教学目标:

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  教学重点:探索并掌握比例的基本性质。

  教学难点:根据乘法等式写出正确的比例。

  教学准备:多媒体课件

  整体设计说明:

  本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

  教学过程

  一、旧知铺垫导入。

  1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  2、比和比例有什么区别?

  设计意图:注重从学生已有的知识出发,为新课做好铺垫。

  二、自主探究

  过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

  设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

  三、反馈练习。

  指出下面比例的外项和内项。(投影出示)

  先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

  设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

  四、探究比例的基本性质

  (1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

  (2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的'基本性质,板书课题。

  (3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

  (4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

  设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

  五、巩固练习

  1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

  2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

  (学生独立完成后,用展示台展示)

  3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

  六、全课总结:这节课你有什么收获。

  设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

  七、拓展练习:把下面的等式改写成比例。

  3×40=8×15

《比的基本性质》教学设计13

  教学目标:

  1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。

  2、培养学生的观察能力、判断能力

  教学重点:引导学生观察、讨论、试算,探究比例的基本性质。

  教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、激趣导入

  1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)

  2、还是让老师给你点提示吧!

  课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。

  3、现在知道是什么了吧!课件出示:扑 克牌

  (设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)

  二、探究新知

  (一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

  1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。

  2、学生汇报写出的比例并说明理由。

  3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)

  4、就学生汇报的比例,找出内项与外项。

  (设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)

  (二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)

  1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)

  课件出示:

  冠军攻略

  参赛者:王老师,全班同学

  规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)

  2、第一轮:6、8、9、12

  (老师比学生提前写完,并由学生验证,得出老师胜)

  第二轮:3、5、4、8

  (老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3

  (老师比学生提前写完比例,并由学生验证,老师胜)

  (设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)

  3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?

  4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”

  5、师讲解如何很快的`判断4个数能否组成比例。

  (设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)

  看样子,同学们对新知掌握的不错,愿意接受挑战吗?

  (三)练习运用。

  1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例

  6∶3和8∶50 2∶2.5和4∶50

  2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

  指出:2.4与40的乘积等于1.6与60的乘积。

  三、课堂巩固,练习提升

  1、用你喜欢的方法来判断哪组中的两个比能否组成比例。

  (1)14:21和6:9 (2)3/4:1/10和15/2:1

  (3)9:12和12:15 (4)1.4:2和7:10

  2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)

  3、根据比例的基本性质,在括号里填上合适的数。

  8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9

  四、实践活动题

  8:A=B:1.5,那么A和B可能是( )和( )

  如果A是小数,那么A可能是( ),B可能是( )。

  如果A-B=1,那么A可能是( ),B可能是( )

  如果A+B=7,那么A可能是( ),B可能是( )

  (设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)

  五、全课总结

  通过这节课的学习,你有哪些收获?

《比的基本性质》教学设计14

  教学内容:义务教育教科书六年级上册第50-51页。

  教学目标:

  1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。

  2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  3、通过自主探究、合作交流等活动,发展学生概括推理能力。 教学重点:掌握化简比的方法,能正确地把一个比化成最简整数比。教学难点:理解并掌握比的基本性质。 教具学具:课件。 教学过程:

  一、回顾旧知。

  1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”

  2、比与除法和分数有什么关系?。 比

  前项

  :(比号) 后项

  比值 除法

  被除数 ÷(除号) 除数 商 分数

  分子 -(分数线)分母 分数值

  二、探究新知。 探究一:比的基本性质

  1、同学看这个除法算式:

  它们是正确的吗?为什么?运用了除法的什么性质?

  2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?

  3、根据比与分数的关系,我们还能怎么研究比的规律?

  设计意图:通过除法商不变的性质、分数的.基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。:

  4、即时练习,强化巩固

  在比的基本性质中,大家觉得要注意什么?让我们一起来看看: (1).根据108:18=6,说出下面各比的比值。 54:9=(6) 216:36=(6)10800:1800=(6) (2).判断并说明理由。

  (1)6:7=(6×0):(7×0)=0 (2)1:2=(1+2):(2+2)=0.75 (3)2:8=2:(8÷2)=0.5探究二:根据比的性质我们能做什么?(化简比)

  1、明确什么是“最简整数比”。

  出示一些比,让学生说说哪些是整数比,哪些是最简整数比。

  2、出示例题,明确问题。

  例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?

  分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)

  学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。

  那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。

  3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?

  出示例题,全班讨论猜想。 学生独立完成。

  集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”

  1212:?(?18):(?18)?3:2 69690.75:2?(0.75?100):(2?100)?75:200?3:8

  探究三:一个比中有分数,又有小数该怎么化简呢?

  3出示0.125:,学生讨论,汇报结果。

  8设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究

  二、三突破本节课的难点。:

  三、强化新知,达标检测。

  通过数学课本51页“做一做”,强化认识。 32:16 48:40 0.15:0.3 5173: : 66128设计意图:强化训练:

  四、总结评价

  这节课你有什么收获?还有什么疑问?

《比的基本性质》教学设计15

  知识与技能:

  理解并掌握不等式的三个性质,能运用性质,用不等号连接某些代数式,进行不等式的变形。

  过程与方法:

  经历自主学习,小组交流合作学习,以及课堂上的成果,培养学生自主分析问题,解决问题的能力,养成与他人交流,共同学习,共同进步的学习方法。

  情感态度与价值观:在自主分析,交流合作,成果的活动中,感受学习的乐趣,体会与人合作的快乐。

  教学难点:

  正确运用不等式的性质。

  教学重点:

  理解并掌握不等式的性质3。

  教学过程:

  一、创设情境引入新课

  利用一台平衡的天平提出问题,引入新课

  1、给不平衡的天平两边同时加入相同质量的砝码,天平会有什么变化?

  2、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

  3、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。

  二、合作交流探究新知

  1、问题情景:数学老师比语文老师年龄小。

  1、10年后谁的年龄大?

  2、20年之后呢?

  3、5年之前呢?

  假设数学,语文两位老师的.年龄分别为a,b,则a

  a+10

  a+20

  a—5

  2、探索与发现

  一组:已知5>3,则5+2 3+2

  5—2 3—2

  二组:已知—1

  —1—33—3

  想一想不等号的方向改变吗?

  3、归纳:不等式的性质1:

  不等式两边都加(或减去)同一个数(或式子),不等号的方向不变

  如果a<b,那么a+c

  如果a>b,那么a+c >b+c,a—c >b—c。

  不等号方向不改变!

  4、大胆猜想

  不等式两边都加(或减去)同一个数,不等号方向不改变

  不等式两边都加(或减去)同一个数,不等号方向不改变

  不等式两边都乘(或除以)同一个数(不为零),不等号的方向呢?

  5、探索与发现

  已知4

  一组:4×2 6×(—2);

  4÷26÷(—2)。

  思考不等号方向改变吗?

  不等式两边都乘(或除以)一个不为零的数,不等号方向改不改变和什么有关?

  6、不等式的性质2:

  不等式两边都乘(或除以)同一个正数,不等号的方向不变。

  如果a>b,且c>0,那么ac>bc,如果a0,那么ac

  7、不等式的性质3:

  不等式两边都乘(或除以)同一个负数,不等号的方向改变。

  如果a>b,且c

  如果a

  三、巩固提高拓展延伸

  例1:判断下列各题的推导是否正确?为什么(学生口答)

  (1)因为7.5>5.7,所以—7.5<—5.7;

  (2)因为a+8>4,所以a>—4;

  (3)因为4a>4b,所以a>b;

  (4)因为—1>—2,所以—a—1>—a—2;

  (5)因为3>2,所以3a>2a.

  (1)正确,根据不等式基本性质3.

  (2)正确,根据不等式基本性质1.

  (3)正确,根据不等式基本性质2.

  (4)正确,根据不等式基本性质1.

  (5)不对,应分情况逐一讨论.

  当a>0时,3a>2a.(不等式基本性质2)

  当a=0时,3a=2a.

  当a<0时,3a<2a.(不等式基本性质3)

  考考你!0>4,哪里错了?

  已知m>n,两边都乘以4,得4m>4n,两边都减去4m,得0>4n—4m,即0>4(n—m),两边同时除以(n—m),得0>4。

  等式与不等式的性质

  1、不等式的三个性质。

  2、等式与不等式的性质对比。

  先前后比较,再定不等号

  四、总结归纳

  1、等式性质与不等式性质的不同之处;

  2、在运用“不等式性质3"时应注意的问题.学生通过总结,可以帮助自己从整体上把握本节课所学知识培养良好的学习习惯,也为下节课学好解不等式打下基础。

  五、布置作业

  1、必做题:教科书第134页习题9.1第4、5题

  2、选做题:教科书第134页习题9。 1第7题.

【《比的基本性质》教学设计】相关文章:

比的基本性质教学设计06-27

《比的基本性质》教学设计08-17

分数的基本性质教学设计05-30

比例的基本性质教学设计06-04

《比例的基本性质》教学设计05-16

分数的基本性质教学设计08-11

《分数的基本性质》教学设计优秀05-09

分数的基本性质教学设计15篇06-25

《比例的意义和基本性质》教学设计07-11