(集合)梯形的面积教学设计
作为一名无私奉献的老师,时常需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的梯形的面积教学设计,仅供参考,希望能够帮助到大家。
梯形的面积教学设计1
教学内容:
九年义务教育六年小学制数学第九册第74—75页。
教学目标:
1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。
2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。
教学重点:
理解并掌握梯形面积公式的推导,会计算梯形的面积。
教学难点:
理解梯形面积公式的推导过程。
教具准备:
两个完全一样的梯形若干个。
学具准备:
各小组准备两个完全一样的梯形一对。
教学过程
一、复习导入:
1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。
(学生回答,cai依次出现相应图形面积的计算公式)
提问:三角形的面积公式为什么是用底×高÷2?
2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?
二、教学新课:
(一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)
(二)、实验探究:
1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?
② 梯形的面积会跟梯形的什么有关呢?
2.小组合作实验,推导梯形面积的计算公式:
(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。
(2)思考:
①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?
② 拼成的这个图形的面积跟梯形的面积有什么关系?
③ 你觉得梯形的面积可以怎样计算?
(3)小组合作,学生实验。
3. 实验汇报。
4. 引导学生看图并提问:这个梯形的面积可以怎样计算?
现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?
5.概括总结、归纳公式。
教师提问:
①为什么计算梯形的面积要用(上底+下底)×高÷2?
②要求梯形的面积必须知道哪些条件?
三、练习:
(一).基本练习:
(二)解决问题:
四、小结:
通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
五、巩固提高。
板书设计:
梯形面积的计算
梯形的面积=(上底+下底)×高÷2 )
s = (a+b)×h÷2
教学反思:
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的'发现者、创造者,培养学生自我探究和实践能力。
一、动手操作 培养探索能力
在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
二、发散验证 培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。
梯形的面积教学设计2
教学目标
1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。
3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。
重点难点
重点:掌握梯形面积的计算公式。
难点:理解梯形面积公式的推导过程。
教具学具
多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)
教学过程
一、导入
1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?
生:平行四边形的面积=底×高,也就是S=ah。
三角形的面积=底×高÷2,也就是S=ah÷2。
2、指名让学生说出平行四边形、三角形的面积公式的推导过程。
3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。
二、探究
1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?
生:各种梯形,每种两个。
提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。
(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?
(3)它们的.高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
2、学生先独立思考,后小组交流。
教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。
3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?
各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)
三、汇报
四、总结
师:学完这节课,你收获了什么呢?跟大家说说吧!
学生讨论。
老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。
梯形的面积教学设计3
背景:
《数学课程标准》指出:数学教学,要紧密联系学生的实际和生活环境,从学生的经验和已有知识出发,创设生动有趣,有助于学生自主学习、合作交流的问题情境,引导学生开展观察、操作、猜测、验证、归纳、推理、交流、反思等活动,学会从数学的角度去观察事物、思考问题,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,创设问题情境是数学教学的重要策略之一。情境创设能够激发学生的问题意识和促进探究,使思维处于在爬坡状态。引发认识的不平衡并帮助学生生成新的认识。我认为在数学探究活动中,提出一个问题比解决一个问题还重要。这样学生就能达到良好的效果,从而使数学教学活动不断走向深入。现从一个教学片断来谈谈实际教学中如何正确创设情境。
案例:
(课件:金丰苑内一栋栋漂亮的楼房特别引人注目,在周围绿树成荫、环境优雅,但在一栋楼房前有一块地荒着的)
师:如果你是设计师,针对这块荒地,你打算怎样设计?
生1:种花
生2:铺上草坪
师:如果让你去铺,有什么问题吗?
生1:这块地有多大?
生2:这是一块梯形的地,面积怎么算呢?
生3:这块梯形地接近于长方形,能否可以近似地看成长方形估算一下?
师:这个办法能行吗?
生1:不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积。
生2:对。能否根据平行四边形的面积求法,转化成其他图形呢?
师:那就请你们试一试吧。用你的方法,设法求出荒地的`面积。
(利用课前准备的学具,动手试试,4人小组合作。)
生1:割补成一个长方形,面积=[(下底-上底)÷2+上底]×高再计算
生2:用两个完全一样的梯形拼成一个长方形,面积=(上底+下底)×高÷2
生3:用两个完全一样的梯形拼成一个平行四边形,面积=(上底+下底)×高÷2
生4:分成两个三角形计算,面积=上底×高÷2+下底×高÷2
师:同学们真聪明,想出了那么多方法。现在你还有什么想法吗?
生1:可以利用这些公式求出梯形的面积,就可以去铺草坪了。
生2:那么多公式,在计算时该选哪一个?
师:是呀,那么多公式,在计算时该选哪一个呢?(小组商量一下)
这一问,好多学生愣住了。有一学生说:随便,你想选哪一个就选哪一个。
教师引导学生观察这些公式的共同点是什么?学生讨论得出:其实这么多公式,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。
师小结:我们通过不同的方法把梯形转化成熟悉的图形,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。(师板书公式)
反思:
1、创设问题情境,让学生愿说
情境是联系学生经验与学习内容之间的载体,创设一种合情的情境,能营造一种和谐的氛围。宽松和谐的求知氛围是启发学生积极提问的重要前提。它可以给学生留有思维、想象、创新的空间,启发学生自己提出问题;更主要的是学生在这样的氛围里愿意说,敢于说,有助于教师了解学生原有的生活经验和知识起点,为教学的展开铺垫了一个良好的基础。
课一开始,教师就为学生创设了生活中非常熟悉的情景,为学生的提问准备了材料。随后教师的一句“如果你是设计师,针对这块荒地,你打算怎样设计?”激发了学生提问的欲望,把学生真正放在了主体的地位,使提问不再是老师的专用权利,更是学生的权利。师生真正成为学习的共同体。整个过程中,教师都以朋友身份进入课堂,允许学生有疑就问,允许“插嘴”,允许学生说错,不随便否定学生的提问,更多的是给予肯定和表扬,而且经常用“你还有什么问题吗?”“你还有什么想法吗?”等亲切的语句,消除了学生的紧张、戒备等心理,消除了学生的后顾之忧,让学生以最大的热情投入到活动中,敢问,想问,以积极的状态进行探究。
2、运用多种方法,使学生会问
选用学生熟悉的、生活中的实例为素材。情境创设的录像,让人感到亲切熟悉,看到荒地,让学生设计,接着就进行自然设计,而在设计中又遇到了问题:必须先知道面积,而这是梯形,面积怎么求?自然而然,很顺利地过渡到本节课的焦点问题上——怎样求梯形的面积,学生能提出这样有意义、有价值的关键性的问题,源于他们对提供的材料熟悉,觉得有东西可问。
适时点拨,教给学生寻找问题的方法。找问题可从以下几方面去找:在知识的“生长点”上找问题,从旧知到新知的迁移过程中发现和提出问题。本节课学生提出“这块梯形接近于长方形,能否可以近似地看成长方形估算一下”学生反驳“不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积”。这时,教师适当点拨“用你的方法,设法求出荒地的面积”;另外,还可以从知识的结合点上找问题,也就是在新旧知识的内在联系上发现和提出问题。比如本节课教师让学生动手操作,自己经历“操作——观察——猜想——验证”数学化的学习过程,通过对知识的理解、发现与生成中达到目的,从而体验数学“再创造”的过程;也可以让学生在自己不明白,不理解的地方找问题,多问“为什么?”、“是什么?”、“怎么办?”。在这节课中,每到有必要的地方,老师都能恰当地点拨提醒:“你还有什么问题?”、“你有什么想法吗?”暗示学生从这里下手提问题。学生学到的不仅仅是知识,更是一种思考问题的方法。
留给学生质疑的时间和空间。学生有疑好问,正是学生善于思考的表现。教师要提供学生“问题场”,在教学上要多给学生锻炼的机会,把学习的主动权还给学生,使学生真正成为学习的主人。留给学生足够的时间和空间是提供“问题场”的一种手段。学生在这样的空间和时间里能自己发现问题,提出问题,解决问题。这节课中“是呀,那么多公式,在计算时该选哪一个?”的问题出来后,教师再组织学生讨论,并适当引导追问“这些公式的共同点是什么?”学生走向深入的探究,在真正的思考,原来都可以转化成:梯形的面积=(上底+下底)×高÷2。学生学到不仅是这个公式,更是一种转化的数学思想方法。
梯形的面积教学设计4
教学目标:
1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。
2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。
3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:
梯形面积计算公式的推导和运用。
教学难点:
理解梯形面积公式的推导过程。
教学过程:
一、导入新课
1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。
3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
二、新课展开
第一层次,推导公式
(1)猜想:
让学生先猜测一下梯形的面积可能和哪些量相关。
(2)操作学具
①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
学生预设:
方法一:把两个完全一样的梯形拼成一个平行四边形;
方法二:把一个梯形分成两个三角形;
方法三:把一个梯形分成一个平行四边形和一个三角形。
……
师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。
④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的.左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。
(2)观察思考
①教师提出问题引导学生观察。
a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b.每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
问:梯形的面积公式中“(上底+下底)×高”求的是什么?
为什么要除以2?
③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。
方法一:梯形的面积=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
方法二:梯形的面积=平行四边形面积+三角形面积
=上底×高+三角形的底×高÷2
=(2个梯形上底+三角形底)×高÷2
=(梯形上底+梯形下底)×高÷2
④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,公式应用。
(1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。
三、巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
四、全课小结。(略)
板书设计:
梯形的面积计算
平行四边形的面积=底×高例3S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2
S=(a+b)h÷2=156×135÷2
=10530(平方米)
梯形的面积教学设计5
【教学内容】
人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页。
【学情与教材分析】
梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。
【教学目标】
1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。
2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学
和现实生活的密切联系,体会学数学、用数学的乐趣。
【教学重点、难点】
1.理解并掌握梯形的面积计算公式。
2.运用梯形面积计算公式解决问题。
教学关键:
怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。
教具:
课件、梯形卡纸。
学具:
剪刀、各种不同形状的梯形卡纸。
教学过程:
一、课前复习
同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)
请同学们看这幅图片,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学
过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)
2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。学生可能出现的情况:
(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)
3、公式推导:
根据转化方法来推导梯形的面积公式。归纳总结梯形的面积计算方法。梯形面积=(上底+下底)x高÷2
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)
4、用字母表示梯形面积公式
三、应用公式解决问题
我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的`实际问题。)
四、巩固练习
1、选择(进一步明白求梯形面积公式的条件)。
2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)
3、我最聪明。(拓展提高)
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
3、完成课内作业。
现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)
【教学反思】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作
梯形的面积教学设计6
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的'面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点:
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点:
梯形面积公式的推导过程。
五、教学过程设计
(一)导课
1、我们都学过哪些图形的面积?
2 有两个小朋友因求图形的面积需要我们的帮忙。
3、梯形的面积公式是什么呢?(板书课题)
(二)新知
1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、你能用我们学过的转化思想推导梯形的面积计算公式吗?
3、学生动手操作
4、学生展示自己的方法。
5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。
梯形的面积=(上底+下底)×高÷2
6、用字母表示。
S = (a+b) h÷2
(三)应用知识
1、口答练习运用公式。
2、运用公式解决实际问题。(学生自己解答例3)
3、提升练习
(四)课堂总结
1、通过这节课,你有什么收获?
2、课后研究:梯形面积和三角形面积之间的关系?
梯形的面积教学设计7
设计说明
本节课是在学生认识梯形的特征,学会平行四边形面积、三角形面积的计算,并形成一定空间观念的基础上进行教学的。学生已经掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中充分利用原有的知识,经过猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践的能力。
课前准备
教师准备:PPT课件
学生准备:剪刀各种梯形图片
教学过程
⊙复习旧知,引入新知
1.回忆三角形的面积计算公式,简单说一说三角形的面积计算公式的推导过程。
2.(出示教材59页例题情境图)这是一个堤坝的横截面,它是什么形状的?想一想,我们如何求它的面积?(学生说想法)这节课我们就一起来探索梯形面积的计算方法。
设计意图:
通过复习旧知,启发学生运用已有的知识,大胆提出猜测,激发学生探索新知的欲望,使学生明确探究的目的与方向。
⊙实践交流,探索新知
1.转化梯形。
师:我们已经会算哪些图形的面积了?你能把梯形转化成哪种学过的图形?
学生拿出梯形,小组之间合作,尝试把梯形进行转化,师巡视指导。
2.汇报展示。
师:请你们把转化的成果展示出来,再说说转化的过程
方案一:用两个完全相同的梯形拼成一个平行四边形,如下图:
师:拼成的平行四边形与原来的梯形有什么关系?
预设生
1:平行四边形的底等于梯形的上、下底之和。
生2:梯形的高等于平行四边形的'高。
生3:梯形的面积等于所拼平行四边形面积的一半。
方案二:把一个梯形拦腰划分为两个梯形,拼成一个平行四边形,如下图:
师:在这种转化方法中,得到的平行四边形与原来的梯形有怎样的联系?
学生发言后师指出:梯形的面积与平行四边形的面积是相等的,拼成的平行四边形的底是梯形的上、下底之和,高是梯形高的一半。
3.推导公式。
师:通过刚才的操作,我们把梯形转化成了学过的平行四边形,还知道梯形与所拼平行四边形的关系,你能利用平行四边形的面积求出梯形的面积吗?
根据方案一引导学生说出:由于梯形的面积等于拼成的平行四边形的面积除以2,而平行四边形的底是梯形的上、下底之和,高与梯形的高相同,所以梯形的面积等于(上底+下底)×高÷2。
(1)请学生说说公式中每一步的意思。
(2)字母公式的写法。
用S表示梯形的面积,用a表示梯形的上底,用b表示梯形的下底,用h表示梯形的高,则S=(a+b)×h÷2。
(3)请学生填写教材上的问题,用文字和符号两种方式表示梯形的面积计算公式。
4.完成教材59页问题一。
(1)提问:求堤坝横截面的面积就是求什么?需要知道哪些条件?用到什么公式?
(2)请学生独立完成计算。
设计意图:这部分内容是这一节课的重点,也是难点。在激发了学生的探究欲望后,采用了小组合作学习这种方式,让他们掌握主动探索、大胆猜测、积极验证的学习方法。使学生在数学学习活动中相互合作、主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机地融为一体,让学生通过实际操作来推导出梯形的面积计算公式,并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。
⊙巩固练习
1.完成教材60页“练一练”4题。
找准梯形的上底、下底和高,量出长度,用梯形的面积计算公式进行计算。
2.完成教材60页“练一练”5题。
引导学生说一说计算方法:利用梯形的面积计算公式进行计算。即(上底的根数+下底的根数)×高的根数÷2,就能得到这堆圆木的根数。
设计意图:学习生活中的数学是《数学课程标准》精神的体现。练习题的设计,把所学知识与实际生活紧密联系起来,既有基础知识和基本技能的训练,又有综合性的题目,使学生体会到数学与生活的联系。
⊙课堂总结
这节课,同学们在探索梯形的面积计算方法的过程中发挥了自己的聪明才智,创造出了多种推导梯形面积计算公式的方法,而且能够用所学的知识解决生活中的问题,老师相信同学们一定有许多的收获。
⊙布置作业
教材60页“练一练”2、3题。
板书设计
探索活动:梯形的面积
梯形的面积=(上底+下底)×高÷2
用字母表示:S=(a+b)×h÷2
梯形的面积教学设计8
一、教学目标
1、理解并会初步应用求曲边梯形面积的一般方法——“分割—近似代替—求和—取极限”;
2、经历求曲边梯形面积的过程,体验“以直代曲”和“无限逼近”的思想方法,感受数学中的转化与化归思想;
3、通过曲边梯形的面积这一实例,了解定积分的几何背景,借助几何直观体会定积分的基本思想。
二、学情分析
学生在本节课之前已经具备的认知基础有:
一是学生学习过通过割补的方法将不规则图形转化为若干规则图形来计算面积;
二是学生学习过数列求和的基本知识,学生也在课后思考中见过这个结论;
三是学生虽然未学习过极限的有关知识,但通过导数的学习,对极限有了初步的认识。学生在本节课学习中将会面临两个难点:
一是如何“以直代曲”,即学生如何将割圆术中“以直代曲,近似代替”的思想灵活地迁移到一般的曲边梯形上.具体说来就是:如何选择适当的直边图形(矩形、梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。
二是对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值。
教学重、难点
重点:探究求曲边梯形面积的方法。
难点:把“以直代曲”的思想方法转化为具体可操作的.步骤,理解“无限逼近”的思想方法。
四、教学过程
为实现本节课的教学目标,突出重点,突破难点,根据“启发性原则”和“循序渐进原则”,我把教学过程设计为“问题引入,明确主题;类比探究,形成方法;特例应用,细化操作;一般推广,提炼本质”四个阶段.
(一)问题引入,明确主题
1.贴近生活引入农田,求抽象出的不规则图形面积来激发学生兴趣,让学生了解什么样的图形叫做曲边梯形?曲边梯形和直边图形的区别是什么?
2.让学生明确本节课的主题和研究方向:如何求曲边梯形的面积?能不能把曲边梯形面积问题转化成我们熟悉的直边图形面积问题?
(二)类比探究,形成方法
梯形的面积教学设计9
【教学目标】
1.在实际情境中,认识计算梯形面积的必要性。
2.在自主探索活动中,经历推导梯形面积公式的过程。
3.能运用梯形面积的计算公式,解决相应的实际问题。
【教学重、难点】
教学重点:在自主探索中推导出梯形面积公式。
教学难点:能理解和运用梯形面积公式。
【教学准备】
尺子、两个完全相同的梯形纸片、ppt课件。
【教学过程】
一、创设情境,引出问题。
1.出示堤坝横截面,感受求梯形面积的必要性。
说一说:如何求出图中梯形的面积?
预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的面积。
二、自主探索,解决问题。
1.把梯形转化成学过的图形,并比较转化前后图形的面积。
(1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。
发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。
推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。
预设二:可以把梯形通过“割补”转化成一个平行四边形。
发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的`一半。
推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。
2.怎样计算梯形的面积?
(1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。
(2)用字母表示梯形面积公式“S=(a+b)×h÷2”
(3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”
3.师生小结。
三、练习应用,巩固提升。
1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。
2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。
3.先测量,再计算下列图形的面积,并与同伴交流。
四、全课总结,强化延伸。
这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。
梯形的面积教学设计10
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。
六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的'发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九、课外知识的准备
了解多种转化的方法。
梯形的面积教学设计11
教学目标:
1、使学生经历“猜想、验证、发现”的科学研究过程,探索并发现梯形面积的计算方法,能正确计算梯形的面积,并应用公式解决相关的实际问题。
2、培养学生观察、推理、归纳能力,体会转化思想的价值。
3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
教学重点、难点:探索并掌握梯形的面积计算方法。
教学准备:教师准备多媒体课件一套,学生剪下6个梯形。
教学过程:
一、认知准备:知识、策略,双管齐下
谈话:同学们,前面我们已经学习了哪些图形的面积计算?我们是怎样找到它们的计算方法的?用一个词概括就是……(转化)
出示梯形图,提问:这是什么图形?
关于梯形,你已经知道了些什么?
那么,关于梯形,你还想知道些什么?
提问:是啊,梯形的面积该怎样计算呢?你有办法来找出梯形面积的计算方法吗?同桌商量一下。(板书课题:梯形的面积)
组织班内交流,根据学生回答相机板书。(板书:梯形转化成旧图形?)
[设计意图:梯形的面积是在平行四边形和三角形面积之后教学的,因此,“迁移”是本课设计的核心。课始从知识和策略两方面为学生迁移旧知、探索新知作好铺垫:其一、回忆梯形的相关知识;其二、回忆两种图形的面积公式推导过程并适当提炼“转化”思想。这样的准备,紧扣新知,直指要害,为学生留下了广阔的探索空间,简洁而有效。]
二、探索公式:猜想、验证、发现
1、动手操作,尝试转化
提问:你们是怎么想到用“转化”的方法来寻找梯形的面积呢?
师:你们真会动脑筋,能根据前面的学习方法提出这样的猜想(板书:猜想),可这个想法能实现吗?还得怎么办?(板书:验证)
小组活动:挑选梯形尝试转化。
交流,演示,多媒体出示拼成的三种情况。
明确:任何两个一样的梯形都能拼成一个平行四边形(板书),猜想得到证实。
2、讨论关系
师:仔细观察一下,拼成的平行四边形与每个梯形有怎样的关系?
出示讨论题,同桌商量,交流汇报,最后同桌再互相说一说。
[设计意图:学生之前已亲历了平行四边形和三角形面积公式的探索过程,对“转化”思想在推导平面图形面积公式中的作用已有了较深的感受,也积累了一些转化的经验(“剪移拼”和“转移拼”)和观察的经验(从底、高、面积三方面找关系)。因此,今天的“转化梯形”和“寻找关系”早已成了学生“跳一跳可以摘到的果子”!放手让学生自主解决,正是尊重学生数学现实的务实之举,如此创设出的较大探索空间亦有利于激发学生的创造性。]
3、应用关系,体验方法
在3个拼成平行四边形中的梯形上标出上底、下底、高的数据。
师:如果知道了梯形的上底、下底、高,你能利用刚才发现的关系计算出这个梯形的面积吗?
学生任选一个梯形独立求出它的面积。
交流汇报:
(6+10)×4÷2
(3+7)×3÷2
(3+6)×6÷2
谈话:老师发现同学们求梯形面积用的方法竟然完全一样!谁来告诉我,你们这部分算的是什么啊?(划出(6+10))再乘上4呢?
提问:我明白了,这里算的是拼成平行四边形的面积(板书)
那为什么还要除以2呀?
4、想象延伸,发现方法
出示独立的梯形(标有数据)
提问:你能求出这个梯形的面积吗?
学生在草稿本上写下算式。
提问:(3+5)×4算的'是什么?
你能想象出拼成的平行四边形的样子吗?用手书空画一画。
为什么要除以2?
归纳:现在你知道该怎样计算梯形的面积了吗?
根据学生回答板书:发现(上底+下底)×高÷2
[设计意图:一般的教学,在找出“拼成平行四边形和梯形的关系”后,就利用这3条关系通过适当的板书“顺理成章”地推导梯形的面积公式了。但事实是,这看似“顺理成章”的几句推导之词,其中却是浓缩了一系列的逻辑推理,甚至还融合了“等量代换”的思想。因此,直接利用关系推导公式对学生来说是有相当的思维难度的,课后我对部分学生的调查也证实了这一点,很多学生感觉“晕晕乎乎”就得出了公式,对推理的过程仅停留在几句“顺口溜”的字面上,真正能说清楚地没几个。那么,该如何才能让学生真正体悟到公式得出过程呢?我增设了“计算”一环:让学生观察拼合图,利用发现的关系计算拼成平行四边形中梯形的面积。这一计算面积的过程能促使学生主动的应用关系寻求计算方法,加深对3条关系的理解;同时,计算的过程其实正是原来抽象推理的外显和物化,这样通过计算这一形式就把纯推理巧妙地加以直观化,给学生理解公式架起了一座思维的桥梁。最后通过适当的说理、想象、归纳,梯形面积公式的得出就“瓜熟蒂落”了。]
5、回顾过程,感受策略
师:同学们,经过大家共同的努力,我们终于找到了梯形面积的计算方法,就是(生齐说)。我们再一起回顾一下刚才的探索之旅:根据平行四边形和三角形的面积方法的寻找过程,我们大胆的猜测:……
三、应用公式:紧扣主线,不拘一格,技能与发散并重
1、直接应用,熟练公式
学生独立完成“练一练”第2题。
2、活用公式,体会梯形公式的实质
(1)梯形的上下底的和是12厘米,高是4厘米,求它的面积。
(2)“练一练”第1题
3、应用公式解决生活中的实际问题
完成“试一试”。
四、全课总结
师:今天你有什么收获?
梯形的面积教学设计12
学习目标:
1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。
2、培养观察、推理、归纳能力,体会转化思想的价值。
3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
学习重点:
探索并掌握梯形的面积计算方法。
学习难点:
理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。
学习准备:
剪下书后的梯形
学习过程:
一、先学探究
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、按算式画出相应的图形,说说自己是怎么想的?
算式:4×34×3÷2
2、复习梯形的有关知识:举一梯形。
说说梯形的基本特征及各部分名称。
■学情预判:学生在探索并掌握梯形的面积计算方法上可能会困惑不解,要加强引道。
二.交流共享
■后教预设:充分利用图形的可视化特性,进行教学,让学生自己得出结论。
【板块一】学习例6:
(1)出示例6:
用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个梯形有什么特点?
测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
(3)如何计算一个梯形的面积?
从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个的`梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼
成一个
这个平行四边形的底等于
这个平行四边形的高等于
因为每个梯形的面积等于拼成的平行四边形面积的
所以梯形的面积=
(4)用字母表示梯形面积公式:
三、反馈完善
1、试一试:一块梯形的麦田,上底是36米,下底是54米,高是40米。求这块麦田的面积。
2、完成P15练一练
一个梯形的面积与整个平行四边形的面积有什么关系?
3、P5动手做
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
平行四边形,学习目标,计算方法,自信心,教学
梯形的面积教学设计13
一、复习准备
1.复习旧知,铺垫引导
师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?
生:转化成平行四边形。
(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)
谈话:同学们对前面的知识掌握的真不错。
二、新知探索
(一)呈现实际情境,感受计算梯形面积的必要性
师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)
师:你认为我们该从哪儿入手研究呢?
(学生思考片刻可能会回答:可以先转化为学过的图形)
师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。
(二)提供材料,自主探究图形的转化过程
1、提出小组合作的要求
师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:
a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。
b.把你的方法与小组成员进行交流,共同验证。
C.选择合适的方法交流汇报。
2.自主探究,合作学习
(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)
3.全班汇报交流
师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。
生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。
(学生边动手演示,边说转化过程。)
生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。
生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。
(三)探索、归纳梯形的面积计算公式
师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?
生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。
生:梯形的面积是所拼平行四边形面积的一半。
生:梯形的面积=(上底+下底)高2
(教师板书梯形面积计算公式)
师:一个梯形的面积为什么要除以2?
生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。
师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?
板书:S=(a+b)h2
(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的.面积)
三、联系实际,巩固运用
1.试一试
引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积
(1)出示篮球场的罚球区图形,请计算出罚球区的面积。
(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
2.练一练第1、2、3题,让学生独立完成。
3.思考题
我们经常见到圆木,钢管等堆成下图的形状,求图中圆木的总根数,你有几种解答方法?
四、课堂小结
师:通过今天的上课,谈谈你的收获。
案例分析:
动手实践、自主探索与合作交流是形计算教学的有效策略,是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:
1.学习策略的变化是本节课最突出的一个特点。如:在探索新知这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过动手实践小组内交流选择可行的方法这样三个步骤,完成了转化和归纳的全过程。突出体现了学生是学习的主人这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。
2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。
不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:两个完全一样的梯形这一条件的重要性。
梯形的面积教学设计14
教学目标:
1、探索并掌握梯形的计算面积公式,能应用公式正确计算梯形的面积;
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;
教学重、难点:
重点是探索并掌握梯形的面积公式,能正确计算形梯的面积。难点是理解梯形面积公式的推导过程。
教学过程:
一、提出学习目标
1、创设情境:出示几个梯形,问,“这是什么图形?”并举生活实例。
师:你能用学过的方法推导出梯形的面积计算公式吗?这就是我们要研究的数学问题。(出示课题)
2、提出学习目标:
(1)小组合作、探究推导梯形面积的计算方法。
(2)应用公式解决实际问题。
二、展示学习成果
1、猜想:可以把梯形转化成已学过的`平面图形吗?
2、小组内个人展示
学生先在小组内互相交流,探究方法。(完成后在小组内按学困生→中等生→优生的顺序进行展示,)
3、全班展示(以小组为单位),⑴推导方法的展示:学生将学具贴在黑板上演示,然后说一说自己的发现。
①倍拼法。用两个完全一样的梯形拼成一个平行四边形。(质疑:梯形与平行四边形有什么关系?)得到:s=(a+b)h÷2
②割补法。沿着梯形两腰中点的连线剪开,拼成一个平行四边形。(质疑:随便剪吗?梯形和平行四边形有什么关系?)得到:s=(a+b)h÷2
③师介绍其他方法,让学生进行推导。得到:s=(a+b)h÷2
4、小结,质疑:为什么要“÷2”?完成板书。
(1)应用公式解决实际问题。(例3及“做一做”、练习十七的第1、2题)
(2)讲解“横截面”,小组内完成。
三、拓展知识外延
1、请你辩一辩。
①两个面积相等的梯形一定可以拼成一个平行四边形。()
②梯形的面积是平行四边形面积的一半。()
③梯形的上下底都扩大两倍,高不变,面积也随着扩大两倍。()
2、生活中的数学。练习十七的第6题。
四、总结完善
这节课同学们又有什么新的收获?
五、作业
1、练习十七的第3、4、5题
2、智力冲浪:练习十七的第8题。
梯形的面积教学设计15
教学目的:
1、掌握梯形的面积计算公式,能正确地计算梯形的面积。
2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点:
正确地进行梯形面积的计算。
教学难点:
梯形面积公式的推导。
教学准备:
投影、小黑板、若干个梯形图片(其中有两个完全一样的。
教学过程:
一、导入新课
1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?
2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?
3、创设情境:
投影显示:
启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)
二、新课展开
1、操作探索
⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。
提问:你拼成了什么图形,怎样拼的?演示一遍。
⑵看一看,观察拼成的平行四边形。
提问:你发现拼成的平行四边形和梯形之间的关系了吗?
出示小黑板:
拼成的平行四边形的`底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的()。
⑶想一想:梯形的面积怎样计算?
学生讨论,指名回答,师板书。
梯形的面积=(上底+下底)×高÷2
师:(上底+下底)表示什么?为什么要除以2?
⑷做一做:计算“前面出示的梯形”的面积。
2、扩散思维
师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:
生1:做对角线,把梯形分割成两个三角形,如下图⑴:
生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。
生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。
师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”
3、抽象概括
师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?
生:s=(a+b)h÷2
4、反馈练习
完成课本p81做一做(一人板演)
三、应用深化
出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?
解释:举例说明“横截面”的含义。学生尝试计算:
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=5.04÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
2、反馈练习:完成p82第1题
四、巩固练习:p82第2题
五、全课小结
六、作业:p82第3、4题
教学后记:
实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。
在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。
【梯形的面积教学设计】相关文章:
梯形的面积教学设计01-16
梯形面积的计算教学设计最新05-09
梯形的面积教学设计15篇(精华)08-15
《认识梯形》教学设计06-01
面积教学设计05-30
《圆的面积》教学设计05-19
圆的面积教学设计06-09
[热]圆的面积教学设计07-06
组合图形的面积教学设计07-12
《组合图形的面积》教学设计06-21