我要投稿 投诉建议

梯形的面积教学设计

时间:2024-08-15 13:53:50 教学设计 我要投稿

梯形的面积教学设计15篇(精华)

  在教学工作者开展教学活动前,往往需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。那么你有了解过教学设计吗?下面是小编收集整理的梯形的面积教学设计,欢迎阅读,希望大家能够喜欢。

梯形的面积教学设计15篇(精华)

梯形的面积教学设计1

  教学内容:

  教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。

  教材分析:

  本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。

  教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。

  教学目标:

  知识与能力:

  在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。

  过程与方法:

  通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。

  情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。

  教学重难点及突破:

  重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。

  难点:理解梯形面积公式的推导过程。

  教学设想:

  本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引入,为后面的探究活动提供保障。在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的.公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。

  教学准备:

  教师准备:

  多媒体课件,练习题

  学生准备:

  前置作业,梯形若干个,彩笔,练习本。

  教学设计:

  一,复习旧知

  师谈话:说一说你对梯形的了解。

  学生自由发言,教师进行评价。

  生1:梯形有上底,下底和高。

  生2:梯形有等腰梯形和直角梯形。

  ……

  师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?

  学生举手,教师指名回答。学生发言预设:

  生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。

  生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。

  ……

  师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?

  板书课题:梯形的面积。

  设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。

  二,探索新知

  1,方法迁移,自主探究梯形的面积公式。

  师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。

  多媒体出示自学要求:

  (1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。

  (2)想一想:可以转化成什么图形?与梯形有哪些联系?

  (3)说一说:你发现了什么?试着推导梯形面积的计算公式。

  (4)瑶以小组为单位,进行合作学习。

  学生小组探究梯形面积的计算方法,教师参与学生的交流。

  学生汇报结果,教师评价并板书。学生汇报预设:

  生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。

  生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2

  生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。

  师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?

  生齐:第三种。

  师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?

  学生举手,教师指名回答。

  S=(a+b)×h÷2

  设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。

  2,教学例3

  出示例3

  学生独立完成,教师对学生进行指导。

  学生完成后全班交流,教师进行方法指导。

  学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)

  3,完成教材96页“做一做”

  请你说一说“做一做”的习题所表达的意思。

  学生举手,教师指名回答。

  学生独立完成习题,教师对学困生进行指导。

  学生汇报,教师评价。

  设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。

  三,巩固应用

  (一)预习答疑

  1,完成“旧知链接”习题

  学生回答对梯形的认识及研究平行四边形,三角形面积的方法。

  说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。

  2,完成“新知速递”习题。

  学生全班订正答案。

  教师对方法进行小结。

  (二)教材习题

  1,练习二十一第6题

  师提问:怎样计算梯形的面积?

  学生举手,教师指名回答。

  学生独立完成习题,教师对学困生进行指导。

  学生汇报,全班评议。

  2,练习二十一第7题

  师:怎样列方程解决问题?

  学生举手,教师指名回答。

  学生独立完成练习,并全班汇报订正,教师进行方法小结。

  (三)课堂作业

  1,想一想,填一填。

  两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。

  2,计算下面梯形的面积。(单位:cm)

  3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?

  4,求下图阴影部分的面积

  教学反思:

  新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他们称为知识的发现者,创造者,能否培养学生自我探究和实践的能力。针对本课教学设计主要有以下几点思考:

  1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。

  2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。

梯形的面积教学设计2

  教学目标

  1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

  2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

  3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

  重点难点

  重点:掌握梯形面积的计算公式。

  难点:理解梯形面积公式的推导过程。

  教具学具

  多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

  教学过程

  一、导入

  1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

  生:平行四边形的面积=底×高,也就是S=ah。

  三角形的面积=底×高÷2,也就是S=ah÷2。

  2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

  3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

  二、探究

  1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

  生:各种梯形,每种两个。

  提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。

  (2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

  (3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的'联系?

  2、学生先独立思考,后小组交流。

  教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

  3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

  各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

  三、汇报

  四、总结

  师:学完这节课,你收获了什么呢?跟大家说说吧!

  学生讨论。

  老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形的面积教学设计3

  一、教学目标

  1、理解并会初步应用求曲边梯形面积的一般方法——“分割—近似代替—求和—取极限”;

  2、经历求曲边梯形面积的过程,体验“以直代曲”和“无限逼近”的思想方法,感受数学中的转化与化归思想;

  3、通过曲边梯形的面积这一实例,了解定积分的几何背景,借助几何直观体会定积分的基本思想。

  二、学情分析

  学生在本节课之前已经具备的认知基础有:

  一是学生学习过通过割补的方法将不规则图形转化为若干规则图形来计算面积;

  二是学生学习过数列求和的基本知识,学生也在课后思考中见过这个结论;

  三是学生虽然未学习过极限的有关知识,但通过导数的学习,对极限有了初步的认识。学生在本节课学习中将会面临两个难点:

  一是如何“以直代曲”,即学生如何将割圆术中“以直代曲,近似代替”的.思想灵活地迁移到一般的曲边梯形上.具体说来就是:如何选择适当的直边图形(矩形、梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。

  二是对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值。

  教学重、难点

  重点:探究求曲边梯形面积的方法。

  难点:把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。

  四、教学过程

  为实现本节课的教学目标,突出重点,突破难点,根据“启发性原则”和“循序渐进原则”,我把教学过程设计为“问题引入,明确主题;类比探究,形成方法;特例应用,细化操作;一般推广,提炼本质”四个阶段.

  (一)问题引入,明确主题

  1.贴近生活引入农田,求抽象出的不规则图形面积来激发学生兴趣,让学生了解什么样的图形叫做曲边梯形?曲边梯形和直边图形的区别是什么?

  2.让学生明确本节课的主题和研究方向:如何求曲边梯形的面积?能不能把曲边梯形面积问题转化成我们熟悉的直边图形面积问题?

  (二)类比探究,形成方法

梯形的面积教学设计4

  一、学情分析

  学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

  因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

  二、教材分析

  "梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的'数学"再创造"打下了良好的基础。

  三、教学目标设计

  1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

  2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象 概括能力,将转化策略的教学融入到学生 的“拼 、剪、画、说”活动中,使学生领悟转 化思想,感受事物之间是密切联系的,使 学生能应用所学知识解决实际问题,发展学生的空间观念。

  3.引导学生运用转化的思想探索知识的变化规律,培养学生分析 问题和解决问题的能力,通过演示和操作,让学生在拼 剪中感受数学知识的内在美,培养团队合作意识。

  四、教学重点难点

  教学重点:

  1.理解并掌握梯形的面积计算公式。

  2.运用梯形的面积计算公式解决问题。

  教学难点:

  梯形面积公式的推导过程。

  五、教学过程设计

  (一)导课

  1、我们都学过哪些图形的面积?

  2 有两个小朋友因求图形的面积需要我们的帮忙。

  3、梯形的面积公式是什么呢?(板书课题)

  (二)新知

  1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?

  2、你能用我们学过的转化思想推导梯形的面积计算公式吗?

  3、学生动手操作

  4、学生展示自己的方法。

  5、分析转化后的图形与梯形的关系,推导出梯形的面积公式。

  梯形的面积=(上底+下底)×高÷2

  6、用字母表示。

  S = (a+b) h÷2

  (三)应用知识

  1、口答练习运用公式。

  2、运用公式解决实际问题。(学生自己解答例3)

  3、提升练习

  (四)课堂总结

  1、通过这节课,你有什么收获?

  2、课后研究:梯形面积和三角形面积之间的关系?

梯形的面积教学设计5

  [教学目标]

  1、利用迁移规律,鼓励学生运用学具进行自主探究,推导出梯形的面积公式。

  2、通过学生动手操作和观察、比较、分析、和概括,自主得出梯形的面积公式,发展学生的空间观念。

  3、培养学生运用“转化”的思想解决问题的能力,培养学生团结协作、勇于创新的精神,使学生获得成功的体验。

  [教学重点、难点]

  通过学生发现梯形与已知图形的联系,自主探究梯形面积计算公式的推导过程。发现梯形与已知图形的'联系,引导学生自主体验梯形面积计算公式的推导过程。

  [教学准备]

  一体机配合教学

  [教学过程]

  一、谈话导入,以旧引新

  师:今天老师想带同学们到老师家里去看看,想去吗?这是老师家里小区的照片,漂亮吗?再来看看这是老师家里的照片,怎么样?

  师:你们能从中找到我们学过的基本图形吗?

  生:长方形,正方形,平行四边形,三角形和梯形。

  师:你还记得这些平面图形的面积公式吗?

  师:真不错,看来同学们对于学过的知识掌握得非常扎实,现在只有这个梯形的面积不知道了,这节课我们就一起来研究一下梯形的面积。

  二、迁移过渡,回顾方法

  师:同学们,还记得平行四边形的面积和三角形的面积是怎么推导出来的吗?

  师:先来说一说平行四边形。(学生汇报,教师操作)

梯形的面积教学设计6

  教学内容:

  九年义务教育六年小学制数学第九册第74—75页。

  教学目标:

  1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

  2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

  教学重点:

  理解并掌握梯形面积公式的推导,会计算梯形的面积。

  教学难点:

  理解梯形面积公式的推导过程。

  教具准备:

  两个完全一样的梯形若干个。

  学具准备:

  各小组准备两个完全一样的梯形一对。

  教学过程

  一、复习导入:

  1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

  (学生回答,cai依次出现相应图形面积的计算公式)

  提问:三角形的面积公式为什么是用底×高÷2?

  2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

  二、教学新课:

  (一)、引入课题:那我们也用两个完全一样的梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

  (二)、实验探究:

  1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

  ② 梯形的面积会跟梯形的什么有关呢?

  2.小组合作实验,推导梯形面积的计算公式:

  (1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

  (2)思考:

  ①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

  ② 拼成的这个图形的面积跟梯形的面积有什么关系?

  ③ 你觉得梯形的面积可以怎样计算?

  (3)小组合作,学生实验。

  3. 实验汇报。

  4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

  现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

  5.概括总结、归纳公式。

  教师提问:

  ①为什么计算梯形的面积要用(上底+下底)×高÷2?

  ②要求梯形的面积必须知道哪些条件?

  三、练习:

  (一).基本练习:

  (二)解决问题:

  四、小结:

  通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

  五、巩固提高。

  板书设计:

  梯形面积的计算

  梯形的面积=(上底+下底)×高÷2 )

  s = (a+b)×h÷2

  教学反思:

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的`发现者、创造者,培养学生自我探究和实践能力。

  一、动手操作 培养探索能力

  在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

  二、发散验证 培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

  在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

  但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形的面积教学设计7

  一、教学内容分析

  《梯形的面积》是冀教版小学数学五年级第六单元第四课时的教学内容。本课是在学习了平行四边形和三角形面积计算公式探索过程的基础上进行教学的。因此教材没有给出操作的材料和方法,而是直接给出一个梯形,提出“小组合用,探索梯形面积的计算方法”的要求,给学生提供小组合作的机会和更大的`探索的空间,这一内容为后继教学“组合图形面积计算”作必要的铺垫。

  二、教学对象分析

  学生已经认识了梯形,掌握了长方形、正方形、平行四边形和三角形面积的计算方法,同时学生已经有了平行四边形面积、三角形面积公式的探索过程的活动经验,了解了转化的数学思想,对于用两个完全一样的梯形拼成一个平行四边形,通过小组讨论及课前铺垫应该能够得能顺利完成。但对于选取从两腰的中点进行剪切、旋转的割补法学生未必能够想到,这应该是普遍存在的困难。

  三、教学目标及教学重难点

  (一)教学目标

  1.知识与技能:经历小组合作探索梯形面积公式、交流及应用的过程;掌握梯形面积的计算公式。

  2.数学思考:在参与操作、观察、实践等数学活动中,学会独立思考,能清晰表达自己的想法,体会转化的数学思想。

  3.问题解决:会利用梯形面积的计算公式解决实际生活问题;学会与他人合作交流;体验解决问题方法的多样性,发展创新意识。

  4.情感与态度:获得小组合作学习的愉快体验,培养学生的团队精神,感受面积公式推导过程的条理性。

  (二)教学重点:将梯形转化成学过的图形,分析、推导梯形面积计算公式。

  (三)教学难点:理解用一个梯形割补成长方形的推导方法。

  四、教学方法、过程

  针对学生的知识基础主要采用小组合作的学习方式,探索两个完全一样的梯形可以拼成一个平行四边形,学生自主分析总结得出梯形面积的计算公式,同时课件辅助推导过程。另外,对于割补的方法,如果学生不能呈现教师要采用课件演示。

梯形的面积教学设计8

  一、复习准备

  1.复习旧知,铺垫引导

  师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

  生:转化成平行四边形。

  (在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

  谈话:同学们对前面的知识掌握的真不错。

  二、新知探索

  (一)呈现实际情境,感受计算梯形面积的必要性

  师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

  师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

  师:你认为我们该从哪儿入手研究呢?

  (学生思考片刻可能会回答:可以先转化为学过的图形)

  师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

  (二)提供材料,自主探究图形的转化过程

  1、提出小组合作的要求

  师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

  a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

  b.把你的方法与小组成员进行交流,共同验证。

  C.选择合适的方法交流汇报。

  2.自主探究,合作学习

  (学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

  3.全班汇报交流

  师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

  生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

  (学生边动手演示,边说转化过程。)

  生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

  生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

  (三)探索、归纳梯形的面积计算公式

  师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

  生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

  生:梯形的面积是所拼平行四边形面积的一半。

  生:梯形的面积=(上底+下底)高2

  (教师板书梯形面积计算公式)

  师:一个梯形的面积为什么要除以2?

  生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

  师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

  师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的.计算公式应怎样表示?

  板书:S=(a+b)h2

  (学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

  三、联系实际,巩固运用

  1.试一试

  引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

  (1)出示篮球场的罚球区图形,请计算出罚球区的面积。

  (2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

  2.练一练第1、2、3题,让学生独立完成。

  3.思考题

  我们经常见到圆木,钢管等堆成下图的形状,求图中圆木的总根数,你有几种解答方法?

  四、课堂小结

  师:通过今天的上课,谈谈你的收获。

  案例分析:

  动手实践、自主探索与合作交流是形计算教学的有效策略,是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:

  1.学习策略的变化是本节课最突出的一个特点。如:在探索新知这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过动手实践小组内交流选择可行的方法这样三个步骤,完成了转化和归纳的全过程。突出体现了学生是学习的主人这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。

  2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。

  不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:两个完全一样的梯形这一条件的重要性。

梯形的面积教学设计9

  我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。

  提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。

  这节课存在的不足之处:

  首先,对学生的关注还不够。几次学生的'板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。

  第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。

  第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。

  反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:

  一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。

  二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。

  三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。

梯形的面积教学设计10

  重点难点

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学准备

  含资料辑录或图表绘制

  教学的过程

 一、第2题

  让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

  二、第3题

  右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

  三、第5题

  要注意两个问题:

  1、统一面积单位;

  2、讲清楚数量关系。

  四、第6题

  先搞清楚水渠和拦水坝的`横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

  五、针对学生在学习过程中出现的问题适当的进行补充和强化。

  通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

梯形的面积教学设计11

  【教学内容】

  人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页。

  【学情与教材分析】

  梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。

  【教学目标】

  1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。

  2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

  3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学

  和现实生活的密切联系,体会学数学、用数学的乐趣。

  【教学重点、难点】

  1.理解并掌握梯形的面积计算公式。

  2.运用梯形面积计算公式解决问题。

  教学关键:

  怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。

  教具:

  课件、梯形卡纸。

  学具:

  剪刀、各种不同形状的梯形卡纸。

  教学过程:

  一、课前复习

  同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的`?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

  请同学们看这幅图片,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

  (在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

  二、探索转化:

  1、引导学生提出解决问题方向:

  我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学

  过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)

  2、动手转化:

  (老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

  小组活动:

  (1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

  小组合作交流,老师巡视指导。学生可能出现的情况:

  (新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

  3、公式推导:

  根据转化方法来推导梯形的面积公式。归纳总结梯形的面积计算方法。梯形面积=(上底+下底)x高÷2

  (在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)

  4、用字母表示梯形面积公式

  三、应用公式解决问题

  我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图

  同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

  (通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。)

  四、巩固练习

  1、选择(进一步明白求梯形面积公式的条件)。

  2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)

  3、我最聪明。(拓展提高)

  五、反思总结,拓展延伸

  1、学生谈收获,谈学习方法。

  2、组内互评:这节课你最想表扬谁,为什么?

  3、完成课内作业。

  现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。

  (解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

  【教学反思】

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作

梯形的面积教学设计12

  教学目标:

  1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

  2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

  3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

  教学重点:

  梯形面积计算公式的推导和运用。

  教学难点:

  理解梯形面积公式的推导过程。

  教学过程:

  一、导入新课

  1、平行四边形、三角形的面积公式是什么?它们的面积公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

  2、出示梯形,让学生说出它的上底、下底各是多少厘米,并画出它的高。

  3、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,生活中还有很多物体面的形状是梯形,(出示一辆汽车侧面图)如汽车玻璃就是梯形的,那梯形的面积又该如何计算呢?我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

  二、新课展开

  第一层次,推导公式

  (1)猜想:

  让学生先猜测一下梯形的面积可能和哪些量相关。

  (2)操作学具

  ①启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

  ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

  ③指名学生操作演示。

  学生预设:

  方法一:把两个完全一样的梯形拼成一个平行四边形;

  方法二:把一个梯形分成两个三角形;

  方法三:把一个梯形分成一个平行四边形和一个三角形。

  ……

  师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

  ④教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条走线,然后把第一个梯形的左边沿着第二个梯形的'右边平行移动,直到成为一个平行四边形为止。

  (2)观察思考

  ①教师提出问题引导学生观察。

  a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

  b.每个梯形的面积与拼成的平形四边形的面积有什么关系?

  (3)反馈交流,推导公式。

  ①学生回答上述问题。

  ②师生共同总结梯形面积的计算公式。

  板书:梯形的面积=(上底+下底)×高÷2

  问:梯形的面积公式中“(上底+下底)×高”求的是什么?

  为什么要除以2?

  ③在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。

  方法一:梯形的面积=上底×高÷2+下底×高÷2

  =(上底+下底)×高÷2

  方法二:梯形的面积=平行四边形面积+三角形面积

  =上底×高+三角形的底×高÷2

  =(2个梯形上底+三角形底)×高÷2

  =(梯形上底+梯形下底)×高÷2

  ④字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

  学生回答后,教师板书:“S=(a+b)h÷2”。

  第二层次,公式应用。

  (1)出示课本第89页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

  (2)学生尝试解答。

  (3)展示台出示例题的解答,反馈矫正。

  (4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

  三、巩固练习

  (1)完成练习十七第1、2和3题。

  (2)讨论完成练习十七第4和6题。

  四、全课小结。(略)

  板书设计:

  梯形的面积计算

  平行四边形的面积=底×高例3S=(a+b)h÷2

  梯形的面积=(上底+下底)×高÷2=(36+120)×135÷2

  S=(a+b)h÷2=156×135÷2

  =10530(平方米)

梯形的面积教学设计13

  【教学目标】

  1.在实际情境中,认识计算梯形面积的必要性。

  2.在自主探索活动中,经历推导梯形面积公式的过程。

  3.能运用梯形面积的计算公式,解决相应的实际问题。

  【教学重、难点】

  教学重点:在自主探索中推导出梯形面积公式。

  教学难点:能理解和运用梯形面积公式。

  【教学准备】

  尺子、两个完全相同的梯形纸片、ppt课件。

  【教学过程】

  一、创设情境,引出问题。

  1.出示堤坝横截面,感受求梯形面积的必要性。

  说一说:如何求出图中梯形的面积?

  预设:联想到三角形等面积公式推导方法,可尝试把梯形转化成以前学过的图形,再比较转化前后图形之间的关系,也许就能求出梯形的'面积。

  二、自主探索,解决问题。

  1.把梯形转化成学过的图形,并比较转化前后图形的面积。

  (1)预设一:把两个完全相同的梯形,“拼组”成一个平行四边形。

  发现:一个梯形的面积是拼成的平行四边形面积的一半;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形的高。

  推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

  预设二:可以把梯形通过“割补”转化成一个平行四边形。

  发现:梯形的面积等于拼成的平行四边形面积;平行四边形的底等于梯形的上底加下底的和;平行四边形的高等于梯形高的一半。

  推导:由“平行四边形的面积=底×高”得出“梯形的面积=(上底+下底)×高÷2”。

  2.怎样计算梯形的面积?

  (1)通过比较转化前后图形之间的关系,得出“梯形的面积=(上底+下底)×高÷2”。

  (2)用字母表示梯形面积公式“S=(a+b)×h÷2”

  (3)运用公式求出堤坝横截面的面积“(20+80)×40÷2=20xxm?”

  3.师生小结。

  三、练习应用,巩固提升。

  1.滑梯侧面的形状是一个梯形,已知梯形的上底是2m,下底是5m,高是1.8m,求出它的面积。

  2.在方格纸上画一个梯形,高是4cm,上底是5cm,下底是7cm,这个梯形的面积是多少平方厘米?(每个小方格的边长表示1cm)。

  3.先测量,再计算下列图形的面积,并与同伴交流。

  四、全课总结,强化延伸。

  这节课,我们运用拼组法、割补法等,通过平行四边形的面积推导出梯形的面积,再一次感受了“转化”的思想。

梯形的面积教学设计14

  一、教材分析

  “梯形的面积”是在学生认识梯形的特征,掌握了平行四边形,三角形的面积计算,并形成一定空间观念的基础上进行的教学。因此,教材没有安排用数方格的方法求梯形的面积,引导学生把梯形转化为已学过的图形来计算它的面积,让学生在自主探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的构建。

  二、教学目标

  1、知识技能目标

  通过剪、拼、摆等操作活动,运用转化思想,寻找图形之间的联系,推导梯形面积计算公式,并运用公式解决简单的实际问题。

  2、过程方法目标

  通过梯形面积公式推导过程,培养学生观察、比较、分析、概括能力,发展学生空间观念。

  3、情感态度价值观目标

  使学生能用梯形的面积公式解决简单的实际问题,体会学数学,用数学的乐趣。

  三、教学重点

  理解并掌握梯形面积计算公式。

  四、教学难点

  理解梯形面积公式的推导过程。

  五、学具教具准备

  梯形纸片、小剪刀、多媒体课件

  六、教学过程

  (一)我们来回顾

  1、动画引入:生动的.动画小金鱼

  图中有哪些几何图形?你知道哪些图形的面积公式?

  2、回顾平行四边形面积公式,三角形面积公式的推导过程,突出“转化”的数学思想方法。

  生1:探索平行四边形面积时,把平行四边形转化为已经学过的长方形,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,所以平行四边形面积=底×高。

  生2:探索三角形面积时,把两个完全一样的三角形拼成一个平行四边形。

  (二)我们来探究

  1、情景导入

  车窗玻璃是梯形的,你算车窗玻璃的面积吗?

  2、自主探究

  摆一摆,剪一剪,拼一拼,你能用所学过的方法推导出梯形的面积计算公式吗?

  (三)我们来交流

  1、小组交流

  2、全班汇报展示

  演示你们小组的实验操作过程,说说你的推导方法和过程

  A组汇报展示:我们小组是把两个完全一样的梯形拼成一个平行四边形(操作演示),这样平行四边形的底等于梯形的上、下底的和,高等于梯形的高,所以得到:

  梯形的面积=(上底+下底)×高÷2

  同学们有没有问题?

  生问:为什么要除以2?

  A组同学解疑:因为是两个完全一样的梯形拼成一个平行四边形,所以这两个梯形的面积等于这个平行四边形的面积,即(上底+下底)×高,求一个梯形就要除以2。

  B组汇报展示:我们小组是把一个梯形沿对角线剪成两个三角形(操作演示),它们的面积分别是“上底×高÷2”和“下底×高÷2”,所以梯形的面积=上底×高÷2+下底×高÷2。

  C组汇报展示:我们吓阻是把一个梯形剪成一个平行四边形和三角形一个(操作演示),它们的面积分别是“(下底-上底)×高”和“上底×高÷2”,所以梯形的面积=(下底-上底)×高+上底×高÷2。

  D组汇报展示:我们小组是沿着中位线剪开,拼补成一个平行四边形(操作演示)这个平行四边形的底等于梯形上、下底的和,高等于梯形的高的一半,所以梯形面积=(上底+下底)×高÷2。

  ……

  师:同学们真棒!用这么多的方法求出了梯形的面积,再一起把这些方法梳理一下(课件展示不同方法的推导过程)。

  概括梯形面积公式:梯形面积=(上底+下底)×高÷2,如果用s表示梯形面积,a、b分别表示上底、下底,h表示高,那么s=(a+b)×h÷2。

  注意转化前后的图形之间的联系并体验多种策略解决数学问题的魅力和乐趣。

  3、概括梯形面积计算公式

  (四)我们来解决

  1、求三峡水电站横截面的一部分面积(课件出示题目及图形)

  学生独立解答

  展示学生解答过程,并点评强调不要忘记除以二

  2、求车窗玻璃面积

  课件出示题目

  提示学生要求两块车窗玻璃的面积

  展示学生独立完成的过程并点评

  (五)我们来挑战

  1、一个梯形上、下底的和是10,厘米,高6厘米,求它的面积。如果高不变,面积不变,它的上、下底可能分别是多少?画一画,你能够发现什么?梯形、平行四边形、三角形的面积公式有联系吗?

  2、下次研究圆的面积计算,你打算用什么策略?

  (六)我们来小结

  说说你这节课学到了哪些知识?用到了哪些数学思想方法?

  (七)教学反思

  这节课通过学生动手操作、自主探究、小组合作、全班交流,经历了从探究中发现,从发现中体验,在体验中发展的过程。在这个过程当中,同学们运用类比思想、转化思想,得出了多种计算梯形面积的方法和策略,体验了数学的无限魅力和无穷乐趣,学生在一次次成功的喜悦中,学得其乐无比,兴趣盎然。

  在这节课“我们来挑战”的活动中,第一题有利于同学们研究梯形、平行四边形、三角形面积公式的联系,对所学知识进行有效的整合,还渗透了极限思想方法。第二题多数同学能够类比想到以后研究圆时,仍然把它转化为已将学过的图形研究,让转化的思想深入人心。

梯形的面积教学设计15

  设计说明

  本节课是在学生认识梯形的特征,学会平行四边形面积、三角形面积的计算,并形成一定空间观念的基础上进行教学的。学生已经掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中充分利用原有的知识,经过猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践的能力。

  课前准备

  教师准备:PPT课件

  学生准备:剪刀各种梯形图片

  教学过程

  ⊙复习旧知,引入新知

  1.回忆三角形的面积计算公式,简单说一说三角形的面积计算公式的推导过程。

  2.(出示教材59页例题情境图)这是一个堤坝的横截面,它是什么形状的?想一想,我们如何求它的面积?(学生说想法)这节课我们就一起来探索梯形面积的计算方法。

  设计意图:

  通过复习旧知,启发学生运用已有的知识,大胆提出猜测,激发学生探索新知的欲望,使学生明确探究的目的与方向。

  ⊙实践交流,探索新知

  1.转化梯形。

  师:我们已经会算哪些图形的面积了?你能把梯形转化成哪种学过的图形?

  学生拿出梯形,小组之间合作,尝试把梯形进行转化,师巡视指导。

  2.汇报展示。

  师:请你们把转化的成果展示出来,再说说转化的过程

  方案一:用两个完全相同的梯形拼成一个平行四边形,如下图:

  师:拼成的平行四边形与原来的梯形有什么关系?

  预设生

  1:平行四边形的底等于梯形的上、下底之和。

  生2:梯形的高等于平行四边形的高。

  生3:梯形的面积等于所拼平行四边形面积的一半。

  方案二:把一个梯形拦腰划分为两个梯形,拼成一个平行四边形,如下图:

  师:在这种转化方法中,得到的平行四边形与原来的梯形有怎样的联系?

  学生发言后师指出:梯形的面积与平行四边形的面积是相等的,拼成的平行四边形的.底是梯形的上、下底之和,高是梯形高的一半。

  3.推导公式。

  师:通过刚才的操作,我们把梯形转化成了学过的平行四边形,还知道梯形与所拼平行四边形的关系,你能利用平行四边形的面积求出梯形的面积吗?

  根据方案一引导学生说出:由于梯形的面积等于拼成的平行四边形的面积除以2,而平行四边形的底是梯形的上、下底之和,高与梯形的高相同,所以梯形的面积等于(上底+下底)×高÷2。

  (1)请学生说说公式中每一步的意思。

  (2)字母公式的写法。

  用S表示梯形的面积,用a表示梯形的上底,用b表示梯形的下底,用h表示梯形的高,则S=(ab)×h÷2。

  (3)请学生填写教材上的问题,用文字和符号两种方式表示梯形的面积计算公式。

  4.完成教材59页问题一。

  (1)提问:求堤坝横截面的面积就是求什么?需要知道哪些条件?用到什么公式?

  (2)请学生独立完成计算。

  设计意图:这部分内容是这一节课的重点,也是难点。在激发了学生的探究欲望后,采用了小组合作学习这种方式,让他们掌握主动探索、大胆猜测、积极验证的学习方法。使学生在数学学习活动中相互合作、主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机地融为一体,让学生通过实际操作来推导出梯形的面积计算公式,并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。

  ⊙巩固练习

  1.完成教材60页“练一练”4题。

  找准梯形的上底、下底和高,量出长度,用梯形的面积计算公式进行计算。

  2.完成教材60页“练一练”5题。

  引导学生说一说计算方法:利用梯形的面积计算公式进行计算。即(上底的根数+下底的根数)×高的根数÷2,就能得到这堆圆木的根数。

  设计意图:学习生活中的数学是《数学课程标准》精神的体现。练习题的设计,把所学知识与实际生活紧密联系起来,既有基础知识和基本技能的训练,又有综合性的题目,使学生体会到数学与生活的联系。

  ⊙课堂总结

  这节课,同学们在探索梯形的面积计算方法的过程中发挥了自己的聪明才智,创造出了多种推导梯形面积计算公式的方法,而且能够用所学的知识解决生活中的问题,老师相信同学们一定有许多的收获。

  ⊙布置作业

  教材60页“练一练”2、3题。

  板书设计

  探索活动:梯形的面积

  梯形的面积=(上底+下底)×高÷2

  用字母表示:S=(ab)×h÷2

【梯形的面积教学设计】相关文章:

梯形的面积教学设计01-16

梯形面积的计算教学设计最新05-09

《认识梯形》教学设计06-01

面积教学设计05-30

《圆的面积》教学设计05-19

圆的面积教学设计06-09

[热]圆的面积教学设计07-06

组合图形的面积教学设计07-12

《组合图形的面积》教学设计06-21