我要投稿 投诉建议

分数的基本性质教学设计

时间:2024-08-11 14:12:48 教学设计 我要投稿

分数的基本性质教学设计15篇(优)

  作为一名优秀的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的分数的基本性质教学设计,希望能够帮助到大家。

分数的基本性质教学设计15篇(优)

分数的基本性质教学设计1

  教学内容:人教版小学数学第十册第107页至108页。

  教学目标:

  1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:长方形纸片、彩笔、各种分数卡片。

  教学过程

  一、创设情境,激发兴趣

  1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

  【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

  “同学们,猴王真的分得不公平吗?”

  二、动手操作、导入新课

  同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。

  任选一小组的同学台前展示实验报告,并汇报结论。

  教师根据学生汇报板书:14=28=312

  2.组织讨论。

  (1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。

  3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。

  三、比较归纳,揭示规律。

  请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。

  1.课件出示探究报告。

  2.分组汇报,归纳性质。

  (1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答板书:同时乘上 相同的数)

  (2)从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答板书:除以 )

  (3)有与这一组探究的.分数不一样的吗?你们得出的规律是什么?

  (4)综合刚才的探究,你发现什么规律?

  根据学生的回答,揭示课题,

  (……这叫做板书:分数的基本性质)

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (红笔板书:零除外)

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3、智慧眼(下列的式子是否正确?为什么?)

  (1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)

  (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)

  (3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)

  (4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)

  4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?

  三、回归书本,探源获知

  1、浏览课本第107—108页的内容。

  2、看了书,你又有什么收获?还有什么疑问吗?

  3、师生答疑。

  你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?

  4、自主学习并完成例2,请二名学生说出思路。

  四、多层练习,巩固深化。

  1、热身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  学生口答后,要求说出是怎样想的?

分数的基本性质教学设计2

  教学目标

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3、经历观察、操作和讨论等学习活动,体验数学学习的.乐趣。

  教学重点:

  理解掌握分数的基本性质。

  教学难点:

  归纳性质

  教学设计

  (一)创设情境,引起学生参与兴趣

  1、猴王变戏法(学生模仿复习)

  除法式子变形

  分数与除法变形

  2、教师出示三只可爱的小猴图片,奖励听故事:

  有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。

  同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)

  3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?

  (二)探究新知

  1、动手操作、形象感知

  请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。

分数的基本性质教学设计3

  【教学内容】:

  【教学目标】:

  1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

  3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。

  【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。

  【教学难点】:理解和掌握分数的基本性质。

  【教学方法】:

  本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。

  【学法指导】:

  为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

  【教学准备】:

  1、媒体准备:白板

  2、资源准备:PPT

  【资源运用】:

  1、导入——课件出示问题-——唤醒旧知

  2、探究新知——PPT课件——突破重点、分解难点

  3、拓展延伸

  【教学过程】:

  一、联系旧知,质疑引思。

  1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?

  2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?

  3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?

  谁能说一个与《分数的基本性质》教学设计石泉县城关第二小学贾从先相等的分数?你怎么知道它们相等呢?如果让你证明他们确实和《分数的基本性质》教学设计石泉县城关第二小学贾从先相等,你准备怎么证明?

  【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】

  二、自主操作,验证猜想

  1、初步验证

  (1)提出问题

  谁能说一个与《分数的'基本性质》教学设计石泉县城关第二小学贾从先相等的分数?你怎么知道它们相等呢?

  如果让你证明他们确实和《分数的基本性质》教学设计石泉县城关第二小学贾从先相等,你准备怎么证明?

  (2)汇报方法

  2、深入验证:

  (1)在纸上写上一组你认为可能相等的分数;

  (2)用你喜欢的方法来证明。

  (3)学生操作。

  (4)汇报交流。

  3、概括性质,深化理解

  (1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?

  (2)归纳概括,总结规律,揭示课题。

  (3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的基本性质吗?

  4、运用规律,完成例2。

  (1)理解题意

  (2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?

  (3)独立完成,交流汇报

  【给学生提供开放的探究空间,满足学生的探索欲望。】

  三、知识应用,巩固提升

  1、判断

  (1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。

  (2)两个分数的分子、分母都不相同,这两个分数一定不相等。

  (3)《分数的基本性质》教学设计石泉县城关第二小学贾从先的分子乘以3,分母除以3,分数的大小不变。

  2、五年级有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加象棋活动,有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加象棋活动,有《分数的基本性质》教学设计石泉县城关第二小学贾从先的学生参加手工活动,参加哪个小组的人数多?

  3、把《分数的基本性质》教学设计石泉县城关第二小学贾从先的分子加上10,分母怎样变化,

  才能使分数的大小不变?

  四、回顾总结,完善认知

  通过本节课的学习,你有什么收获?

  【教学反思】:

  1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。

  2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。

  3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。

分数的基本性质教学设计4

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子最喜欢吃猴王做的香蕉饼了。一天,猴王做了三个大小一样的香蕉饼给小猴们吃,它先把第一个香蕉饼切成四块,分给猴1一块。猴2看到后说:“太少了,我要两块。”猴王于是把第二个香蕉饼切成八块,分给猴2两块。猴3更贪心,它赶紧说:“我要三块,我要三块。”于是,猴王又把第三个香蕉饼切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

  讨论:好的,这是修改后的内容:讨论哪只猴子分得的多?请同学们发表自己的观点。老师拿出三块大小一样的饼干,让学生观察、分配,最终得出结论:三只猴子分得的饼干数量是相同的。

  引导:猴王非常聪明,他想出了一个巧妙的方法来满足小猴子们的要求,并且确保每只小猴子都能得到公平的份额。这个方法就是利用分数的基本性质来进行分配。想要了解更多详情吗?学习了“分数的基本性质”就能揭开这个谜题哦!(板书课题)

  2.组织讨论。

  (1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等关系。具体来说,如果三只猴子分得的饼的分数分别为$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份数和表示的份数是不变的,只是分数的分子和分母变化了。例如,如果它们分得的饼是...,那么这三个分数虽然看起来不同,但实际上是相等的。

  (2)猴王给小猴子分了三块大小一样的香蕉,分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:2=4=6。

  (3)我们班有40名同学,按照学习小组划分,每组有10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并计算出:12=24=20xx。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)34到68,分子、分母都乘以2得到。原来是把1平均分成4份,现在是把分的份数和表示份数都扩大2倍。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)学生们对几组分数进行了观察,发现分数的分子和分母都乘以相同的数时,分数的大小不变。经过讨论后,他们得出结论:分数的分子和分母同乘一个数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)分数的分子和分母从右往左看,它们都是按照递减的规律变化的。通过比较每组分数的分子和分母可以发现,分数的分子和分母都除以相同的数,分数的大小不变。

  (板书:都除以)

  (6)在乘法和除法的运算性质中,我们知道都乘以、都除以一个非零数,结果不变。如果去掉其中一个“都”字,换成“或者”,那么就不再满足这个性质了。在教科书中,分数的基本性质规定了“都乘以或者都除以一个非零数”,这样可以确保运算结果的准确性和稳定性。同时,性质中也强调了“零除外”,因为除数为零是不合法的操作,会导致数学运算的错误和混乱。因此,性质中规定了“零除外”是为了保证数学运算的正确性和合理性。

  (板书:零除外)

  (7)学生们现在我们一起来学习关于分数的基本性质。让我们找出这些性质中关键的词语,比如“都”、“相同的数”、“零除外”等。然后我们重点读一下这些关键词。接下来让我们一起读一读黑板上写的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,分数的基本性质与商不变性质之间存在着密切的联系。分数的基本性质包括分子、分母的乘除运算、分数的加减运算等,这些性质在运算过程中保持不变。而商不变性质是指在整数除法中,被除数与商的乘积等于除数。通过分数与除数的关系,我们可以利用整数除法中商不变的性质来解释分数的基本性质。因此,理解商不变性质有助于深入理解分数的基本性质。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的'?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

  1、学生在故事情境中大胆猜想。

  在一个热带岛屿上,有四只猴子发现了一堆香蕉。它们决定公平地分配这堆香蕉,但却遇到了难题。最大的猴子自称为“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一个办法:每只猴子轮流从香蕉堆中拿走一部分,直到香蕉被拿完为止。猴王同意了这个提议,于是开始了“猴王分饼”的游戏。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。请问,最初这堆香蕉一共有多少根?

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在设计练习时,要紧扣重点,设计新颖多样的题目,设置不同难度层次,让学生在练习中逐步提高。首先是基础练习,帮助学生理解概念,检查他们对新知识的掌握情况;其次是巩固练习,加深对知识的理解;最后是通过游戏激发学生的学习兴趣,加深对知识的理解,活跃课堂气氛。这样设计不仅考虑到了学生认知发展的特点,也拓展了他们的思维空间,真正做到了理论联系实际。

  在教学过程中,我们应该注重引导学生思考,让他们通过多种方法去验证结论的正确性。我们不能局限于老师提供的几种方法,而应该放手让学生自由探索。数学教学的目的不是仅仅传授答案,而是培养学生的思维能力。因此,我们应该鼓励学生尝试不同的途径,去验证和证明数学结论,从而激发他们的数学思维,培养他们的解决问题的能力。

分数的基本性质教学设计5

  一、教学目标:

  1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

  2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

  二、教学重点:

  理解掌握分数的基本性质,它是约分,通分的依据

  三、教学难点:

  理解和掌握分数的基本性质,初步建立数学模型。

  四、教学准备:

  课件、正方形的纸。

  五、教学设计过程:

  (一)迁移旧知.提出猜想

  1、回忆旧知

  猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3

  你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

  被除数÷除数=

  谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想:

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

  (二)验证猜想,建构新知

  A、 看图分类

  下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

  B、 讨论方法

  师:你是怎么判断它们相等的?

  师:它们相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  C、研究规律

  师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的`秘密呢?

  利用研究卡进行研究。

  确定的研究对象

  分子和分母同时乘上或者

  除以一个相同的数

  得到的分数

  研究对象与得到的分数相等吗?

  相等( )不相等( )

  猜想是否成立?

  成立( )不成立( )

  充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

  师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

  师:分数的基本性质与商不变性质有什么联系?

  D、质疑完善

  3/4 = 3×( )/ 4×( )

  师:括号中可以填哪些数?

  预设:可以填无数个数

  师:如果只用一个数来表示,填什么数好?

  预设:字母

  师:这个字母有什么特殊要求吗?(0除外)

  得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)

  让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

  (三) 练习升华

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化为分母为12而大小不变的分数。

  3、把2/3和3/4都化为分子为6而大小不变的分数。

  4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

  5、 和 哪一个分数大,你能讲出判断的依据吗?

  (四)总结延伸

  师:这节课学了什么?

  师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)

  六、作业p87-1、2

  板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

  6÷8

  3÷4

  12÷16

分数的基本性质教学设计6

  教学目标

  1、经历探索相等分数的分子、分母变化规律的过程,使学生理解分数的基本性质。

  2、能运用分数的基本性质把一个分数化成指定分母而大小不变的分数。

  3、培养学生观察、分析和抽象概括的能力。

  教学重点

  理解分数的基本性质

  教学难点

  发现和归纳分数的基本性质,并能应用它解决相关的问题。

  教学过程

一、复习导入

  1、说说下面各分数的含义、分数单位及它有几个这样的分数单位。

  2、口算

  120÷30= 40÷5=

  12÷3= 400÷50=

  师:观察两组算式,说说你发现了什么?是我们已经学过的除法的什么性质呢?

  在除法运算中,被除数和除数同时乘或除以同一个非零数时,商不会改变,这就是除法的商不变性质。

  师:除法和分数有什么关系呢?

  板书课题:分数的.基本性质

  二、新授

  师:阿凡提同学都熟悉吧?今天老师带来一个有关阿凡提的数学小故事,跟同学分享一下:

  有一个农夫爷爷,他有三头同样健壮的牛,要分给他的三个儿子。老大分到第一头牛的一半,老二分到第二头牛的四分之二,老三分到第三头牛的八分之四。老二听了,觉得自己很吃亏,于是三兄弟大吵起来。正巧经过的智者阿凡提问清争吵原因后,他想了想,然后跟他们说了几句话。三兄弟听后恍然大悟,停止了争吵。

  同学们,你们知道阿凡提跟三兄弟讲了什么吗?

  生自由发挥。

  师:这里有三张同样大小的正方形纸,分别代表着地主爷爷家的三块地。我们一起来看看三兄弟分到的地。你能用分数来表示吗?(出示三张纸)

  师:通过观察,可知,三兄弟分到的地同样多。那这三个分数是什么关系呢?

  生:相等

  师:请观察这三个分数的分子和分母,它们之间存在一种规律。经过仔细观察可以发现,这三个分数的分子和分母在每个分数中都是互换位置的。也就是说,第一个分数的分子和分母交换位置后得到第二个分数,第二个分数的分子和分母再次交换位置后得到第三个分数。这种规律使得这三个分数的大小相等,但分子和分母各不相同。

  (预设)生1:分子、分母同时扩大2倍。

  生2:分子、分母同时扩大4倍。

  师:那从右往左看呢?

  总结规律:分数的基本性质是指分数中的分子和分母同时乘或除以相同的数(除数不能为0),分数的大小不变。这一性质可以帮助我们简化分数,使得计算更加方便和简便。

  师:和除法商不变的性质对比观察,你有什么发现?

  三、分数基本性质的运用

  把和化成分母是12而大小不变的分数。

  四、巩固练习

  五、课堂总结

分数的基本性质教学设计7

  一、故事引人,揭示课题。

  1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?

  讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

  引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  [一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

  2.组织讨论。

  (1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。

  (3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了, 分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

  思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  [得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

  [有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  二、比较归纳,揭示规律。

  1.出示思考题。

  2.比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

  板书:

  (2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

  (3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

  (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的'大小不变。

  (板书:都乘以 相同的数)

  (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都除以 )

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  [新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

分数的基本性质教学设计8

  教学目标:

  知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

  过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

  教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。

  教学难点:自主探究出分数的基本性质

  教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

  教学流程:

  一、故事导入激趣引思

  引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

  讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?

  生发表见解。

  二、自主合作探索规律

  1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

  2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

  (1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

  (2)思考:在写分数的.过程中你们发现了什么规律?

  组内商量一下然后开始行动!

  3、小组研究教师巡视

  4、全班汇报

  交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

  板书课题:分数的基本性质打出幻灯

  5、反思规律看书对照找出关键词要求重读共同读

  6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

  三、自学例题运用规律

  过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始

  生自学

  集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

  四、多层练习巩固深化

  1、判断对错并说明理由

  2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

  2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

  思考:分数的分母相同,能有什么作用?

  3、圈分数游戏圈出与1/2相等的分数

  4、对对碰与1/2,2/3,3/4生生组组师生互动

  五、课堂小结课堂作业

  结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

  作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本性质教学设计9

  教学目标:

  情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

  知识技能:理解分数的基本性质,并且能够灵活应用。

  过程方法:动手操作、观察、讨论

  教学重、难点:理解并掌握分数的基本性质并灵活应用。

  教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

  学具准备:拼图12组。

  教学设计理念:

  《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

  教学过程:

  一、 创设情境,激趣导入。

  设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

  师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

  请看拼图要求:1、用所给材料拼成三个完全一样图形。

  2、用分数表示阴影部分占整幅图的几分之几,并写出来。

  二、合作交流,探究规律。

  设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

  (一)拼图,写分数。

  (1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

  (2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )

  (二)找分数间的大小关系。

  (1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

  (2)汇报:每组中三个分数大小相等。

  比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

  (三)探究规律

  (1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

  (2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

  (3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。

  (4)师结合图依据分数的意义讲解变化规律。

  (5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

  (四)对比分数的基本性质和商不变的'性质。

  学生对比,说出两个性质间的区别与联系。

  三、应用。

  设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

  1、填空

  (1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

  2、比较 和 的大小。

  四、游戏"找朋友”。

  设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

  同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

  ,五年级数学分数的基本性质教学设计

分数的基本性质教学设计10

  教学目标

  1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

  教学重点使学生理解分数的基本性质。

  教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学过程

  一、故事情景引入

  同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

  好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

  同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

  讨论完了请举手。

  生甲:“我觉得不公平,小红分得多。”

  生乙:“我觉得小明分得多。”

  生丙:“我觉得公平,他们三个分得一样多。”

  师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

  二、新授

  师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

  请你们把这三张圆片叠起来,比一比大小,看看怎么样?

  生:“三张圆片一样大。”

  1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

  首先,请在第一张圆片上表示出它的1/3;

  再在第二张圆片上表示出它的2/6;

  然后在第三张圆片上表示出它的3/9。

  好了,大家动手分一分。(教师巡视指导)

  2. 师:“分完了的请举手?

  老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

  下面请哪位同学说一说,你是怎么分的?”

  生:“把第一个圆片平均分成三份,取其中的`一份,就是它的三分之一。”

  生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

  师:“那九分之三又是怎么得到的呢?大家一起说。”

  生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

  (学生说的同时,教师操作,分完后把圆片贴在黑板上。)

  3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

  小结:原来三个圆的阴影部分是同样大的。

  师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

  生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

  师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

  生甲:“通过图上看起来,这三个分数应该是一样大的。”

  生乙:“这三个分数是相等的。”

  师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

  4. 研究分数的基本规律。

  师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

  生甲:“三个分数的分子分母都变了,大小没变。”

  师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

  第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

  生乙:“它的分子分母都同时扩大了两倍。”

  师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

  再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

  教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

  学生发言

  小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

  5. 深入理解分数的基本性质。

  师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

  师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

  齐读分数的基本性质,并用波浪线表出关键的词。

  生甲:我觉得“零除外”这个词很重要。

  生乙:我觉得“同时”“相同”这两个词很重要。

  师:想一想为什么要加上“零除外”?不加行不行?

  让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

  教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

  三、应用

  1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

  2.学生练习课本例题2,两名学生在黑板上做。

  3.学生自己小结方法。

  4.按规律写出一组相等的分数。

分数的基本性质教学设计11

  一、学习目标:

  1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

  2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。

  二、重、难点:

  理解和掌握分数的基本性质。

  三、学习过程:

  一、导入

  (1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。

  (2)你发现了什么?

  二、学习新知

  1、师板书 = =

  2、观察三组分数,它们的分子和分母是怎样变化的?

  分小组讨论,并填写

  1 ( ) 2 1 ( ) 4

  2 ( ) 4 2 ( ) 8

  4 ( ) 2 2 ( ) 1

  8 ( ) 4 4 ( ) 2

  总结:分数的分子和分母同时 或 相同的数,分数的大小

  3、应用

  根据分数的基本性质,我们可以写出很多相等的分数

  ⑴的分子和分母同时乘2,等于( );同时乘4,等于( );

  同时乘5,等于( );同时乘7,等于( )

  总结: =( )=( )=( )= ( )

  ⑵= 说出你这样填的理由

  = 说出你的理由

  4、巩固练习

  ⑴第80页 (直接做在课本上)

  ⑵.在下面的括号里填上适当的数。

  在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立

  ⑶

  请你当法官(说明理由)

  ⑷下面的分数化成分母是12,而大小不变的分数

  ⑸下面的分数化成分子是6,而大小不变的分数

  5、拓展练习

  判断

  1、分数的.分子和分母同时加上或者减去相同的数,分数的大小不变。( )

  2、把 的分子增加1,分母增加3,分数的大小不变。( )

  3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )

  思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?

分数的基本性质教学设计12

  一、教学内容

  分数的基本性质。(课本第75―76页的例1、例2及“做一做”、第77页练习十四的第1―3题)

  二、教材简析

  《分数的基本性质》是小学数学教材中重要的一部分,它对于学生理解分数的概念和运算规律具有重要意义。分数的基本性质包括分数的分子和分母的关系,以及分数的大小比较等内容。通过学习分数的基本性质,可以帮助学生建立起对分数运算的基本认识,为后续学习打下坚实的基础。分数的基本性质是数学中的重要规律,通过观察和实践,学生可以逐渐理解分数的特点和规律,从而更好地掌握分数的运算方法。

  三、教材处理

  以前,随着教育教学理念的不断更新,教师们开始重新审视《分数的基本性质》这一内容的教学方法。传统上,教师通常将其视为一种静态的知识,通过几个例子让学生快速总结规律,然后通过练习加深理解。然而,随着课程改革的深入,教师们开始更加注重学生获取知识的过程。但现在的问题是,有些教学过于碎片化,步骤较小,缺乏足够的引导和探究过程。因此,对于《分数的基本性质》的教学,是否可以有更多的新思路呢?根据新的课程标准,教师应该给予学生更多的机会进行数学活动,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识、思想和方法。

  根据这一新的理念,我认为教师可以通过设计具有挑战性的探索活动,让学生在探索的过程中自主发现分数的基本性质。通过这种动态的学习过程,学生可以体验到发现真理的乐趣,感受到数学思维的魅力,培养科学学习的方法。因此,教师在教学中的`重点不仅仅是传授规律和应用,更要注重培养学生的思维和方法。

  根据以上思考,我将教学重点放在让学生探究发现分数的基本性质上,设计了一种“猜想―验证―反思”的教学模式。在整个课程中,我通过引导学生进行迁移旧知、大胆猜想、实验操作、验证猜想、质疑讨论和完善猜想等一系列探究过程,突出了过程性目标。这种教学模式旨在激发学生的探究兴趣,培养他们的逻辑思维能力和解决问题的能力。

  四、设计意图:

  这节课主要是根据小学数学课程标准设计的,旨在通过创设问题情境、提出问题、解决问题、建立数学模型、解释数学模型以及运用数学模型等环节,帮助学生更好地理解和掌握数学知识。

  1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

  2、从故事情境中提出问题,体现数学来源于生活。

  3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

  4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

  5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。

  6、在游戏活动中对数学知识进行拓展运用。

  五、教学目标

  1、知识与技能

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2、情感态度与价值观

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

  (2)体验数学与日常生活密切相关。

  3、过程与方法

  (1)在参与观察、操作和讨论等学习活动的过程中,我们通过探索和实践来加深对知识的理解。在这个过程中,我们不仅能够获得直观的认识和经验,还能够培养逻辑思维和解决问题的能力。通过这样的学习方式,我们能够更好地理解分数的基本性质,并能够对其进行简要而合理的说明。

  (2)培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决问题的需要,收集有用的 信息 进行归纳,发展学生的归纳、推理能力。

  六、教学重点

  理解分数的基本性质

  七、教学难点

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  八、教学准备

  教师:电脑课件

  学生:圆纸片长方形纸

  九、教学过程:

  (一)回顾复习,旧知铺垫。

  课件出示复习题

  1、商不变的性质

  12÷3=()

  (12×10)÷(3×10)=()

  (12÷3)÷(3÷3)=()

  利用什么知识填空的?

  2、除法与分数的关系

  30÷120=()/()

  ()÷()=17/51

  利用什么知识填空的?

  (二)故事引人,揭示课题。

  课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。……

  师:到底谁回答得对呢?我们一起动手分饼来求证吧

  1、合作探究

  师:请同学们组成小组,每组拿出三个大小相等的圆,用阴影部分或涂色表示每个和尚分得的饼,展示出平均分配的情况。学生小组合作,共同展示出分配公平的结果。

  师:比较一下阴影部分的大小,结果怎样?

  生:阴影部分的大小相等。

  师:阴影部分相等说明每个和尚分的饼相等。

  师:请同学们用分数表示阴影部分。

  师:阴影部分相等说明这三个分数怎样?

  生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)

  2、组织讨论。

  师:仔细观察这三个分数什么变了,什么没有变?

  让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。

  师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  3、比较归纳

  同学们:从左到右观察,这三个分数的分子和分母都是按照相同的比例变化的,保证了分数的大小不变。

  经过几名学生的集体讨论后,他们发现一个有趣的规律:当一个分数的分子和分母同时乘以相同的数时,这个分数的大小保持不变。接下来我们一起来探索这个规律的原因。

  师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)

  4、揭示规律

  教师小结:大家刚才都认真观察了,发现分数的分子和分母之间有着一种规律性的变化,而分数的大小却保持不变。这正是我们今天要学习的新知识。(板书课题:分数的基本性质)

  师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)

  师:很好,让我们来总结一下分数的基本性质。在我们的教科书中,分数的基本性质包括:分数的大小比较、分数的加减乘除、分数的化简、分数的约分等。与同学们总结的不同之处在于书中强调了分数的化简和约分这两个概念。这些性质都是非常重要的,能够帮助我们更好地理解和运用分数。让我们继续学习,掌握这些知识吧。

  全班讨论:为什么要规定0除外”?

  引导:在一个寺庙里,有一个聪明的老和尚和一个小和尚。一天,小和尚拿着一块大饼去找老和尚,请求老和尚帮忙将这块大饼平分成两份。老和尚想了一会儿,然后将大饼切成了两块形状完全相同的小块,然后说:“这样一份给你,另一份给我。”小和尚高兴地接受了。老和尚这样做是因为他知道:只要两份的形状大小完全相同,那么无论怎么分,两份总是公平的。

  (三)梳理沟通,灵活运用。

  1、分数的基本性质与商不变的性质的联系。

  想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?

  启发学生说出它们之间的联系:

  (1)分子相当于被除数,分母相当于除数;

  (2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除以相同的数;

  (3)“相同的数”中要求“0除外”;

  (4)商不变相当于分数的大小不变。

  2、分数基本性质的应用

  (1)出示课本第76页例2,把2/3和10/24分别转化成分母是12而大小不变的分数。

  (2)认真审题,弄清题意。

  要求学生读题后归纳出题目的要求。

  a、分母都变成12

  b、分数的大小不变

  (3)想一想:怎么化,根据什么?

  过程要求:

  a、学生独立思考,完成题目要求;

  b、全班反馈,教师课件显示。

  (四)多层练习,巩固深化。

  1、完成教科书第77页练习十四的第1―3题。

  (1)第1题

  此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。

  (2)第2题

  这道题目涉及分数的大小比较,需要运用分数的基本性质进行计算。学生可以将2/5化简为4/10,或者将4/10化简为2/5,然后进行比较大小。

  (3)第3题,说出相等的分数(对口令)

  此题是运用分数基本性质的游戏练习,游戏时,让学生以同桌为单位,仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。

  2、教科书76页“做一做”

  (1)由学生独立完成,然后同学交流。

  (2)全班反馈,说一说思维过程。

  (五)小结

  教师:同学们,经过今天的学习,你有什么收获吗?在分数运算中,我们学到了一个重要的性质:当分子和分母同时乘以或除以相同的数时,分数的值不会改变。这个性质在简化分数运算时非常有用,希望大家能够灵活运用这个知识点。

  (六)动脑筋出教室游戏(机动)

  请拿出手中的纸片,上面写着不同的分数。请仔细看清自己手中纸片上的分数,然后报出来。报出相同分数的同学先离场,接着是下一个相同分数的同学,最后是剩下的同学离场。请开始游戏。

  十、板书设计

  商不变的性质

  被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数与除法的关系

  a÷b=a/b(b≠0)

  分数的基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教学设计13

  教学内容:人教版新课标教科书小学数学第十册75~77页例

  1、例2.教学目标:1知识与技能目标:

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2、过程与方法目标:

  (1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。

  3、情感态度与价值观目标:

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。

  教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:

  一、故事导入。

  师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。

  师:老师这里有一个慢羊羊分饼的故事,羊村的小羊最喜欢吃村长做得饼。一天,村子做了三块大小一样的饼分给小羊们吃,他把第一块饼的1/2分给懒羊羊,再把二块饼的2/4分给喜羊羊,最后把第三块饼的4/8分给美羊羊,懒羊羊不高兴地说:"村长不公平,他们的多,我的少。”(师边说边板书分数)同学们,村长公平吗?他们那个多,那个少?

  生:公平,其实他们分得一样多。

  师:到底你们的猜想是否正确呢?让我们来验证一下!

  二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)

  师:(读要求)现在开始.(学生汇报)师:你们发现了什么?

  生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)

  生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)

  2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的分子和分母变化了,但分数的大小没变。

  师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。

  生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。

  师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。

  (出示课件)

  小组汇报:(归纳规律)

  师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。

  师:同时乘

  6.8呢?生:不变。

  师:那你们能不能根据这个式子来总结一下规律呢?

  生1:一个分数的分子和分母同时乘相同的数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......

  师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。

  生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。

  生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)

  师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。

  师:同时除以

  6.8呢?生:不变。

  师:那你们能不能根据这个式子来总结一下规律呢?

  生1:一个分数的分子和分母同时除以相同的数,分数的大小不变。生2:一个分数的分子和分母同时除以相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生举例

  3、强调规律

  师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)

  生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。

  生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。

  师:分数的分子、分母都乘或除以相同的数,分数的大小不变,这里“相同的数”是不是任何数都可以呢?我们看一看(课件出示)师:这个式子成立吗?

  生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。

  师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。

  师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)

  师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)

  师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)

  师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)

  生:(读题,用手势表示对、错,并说出原因)

  三、运用规律,自学例题1、学习例2师:这个分数的基本性质特别的'有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数,我们一起去看一看。(课件出示例题)学生读题

  师:分子、分母应该怎样变化?变化的依据是什么?小组内讨论一下(学生讨论)师:谁来说一说?

  生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。

  师:(巡视)请一名学生说出答案,(生说,师出示答案)

  四、分数的基本性质与商不变的性质

  师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。

  师:除法里商不变的性质是怎么说的?

  生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。

  小组讨论

  师:哪一组把讨论的结果汇报一下。

  生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)

  师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)

  生:5除以10等于1/2,当被除数5缩小5倍就相当于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,当除数24除以3得8就相当于分母除以3,分母除以3分子也除以3,12除以3得4.五、课堂运用。1、跨栏高手

  师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)

  师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:

  师:当了跨栏高手,我们的成绩非常的好,那我们就到羊村去玩吧,来到羊村,慢羊羊让大家当村长,解决难题,你们敢接招吗?生:敢

  师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果

  六、捡拾硕果

  看到同学们这么自信的回答,老师知道今天大家的收获不少,说一说这节课你都收获了哪些?生说

  师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!

分数的基本性质教学设计14

  教学内容:人教版小学数学第十册第75页至78页。

  教学目标:

  1、分数是数学中常见的表示形式,它由分子和分母组成,可以表示部分和整体之间的关系。学生在学习分数时,需要掌握分数的基本性质,比如分子和分母可以同时乘以一个非零数,来得到一个等价的分数。这样做不会改变分数的大小,只是改变了分数的形式。这个性质在简化分数、比较分数大小等问题中非常有用。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  课件、长方形纸片、彩笔。

  教学过程:

 一、创设情境,忆旧引新

  悟空师徒四人来到一个小国家——算术王国,猪八戒饥肠辘辘,悟空便对他说:“我给你10块馒头,平均分2天吃完,怎么样?”八戒闻言大怒:“太少了,你这猴子欺负我!”悟空眯起眼睛说:“那我就给你100块馒头,平均分20天吃完,可以了吧。”八戒听后大喜:“太好了!太好了!这下每天我可以多吃点了!”

  同学们,你们认为八戒说得有道理吗?(没道理)

  很久很久以前,在一个神秘的森林里,一只小松鼠和一只小松鼠精灵相遇了。小松鼠问道:“你是谁?为什么看起来和我这么像?”小松鼠精灵神秘地笑着说:“或许我们有着某种特殊的联系,但这个谜团需要我们一起去解开……”

  为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

  先算出商,再观察,你发现了什么?

  被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

  8÷15=? 3÷20=?? 14÷27=

  二、动手操作 、导入新课

  同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

  我们把三张纸片比喻成三块饼,大家一起比较,每人的三块饼大小是相同的吗?请拿出第一块饼,我想与你每人一块,确保它们大小一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?

  我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

  当我们想要平均分配四块给你和我时,你觉得这种分配方式可行吗?用分数来表示这种分配又是怎样的呢?这三个分数的大小是否相等呢?为什么呢?在本节课中,我们将一起探讨这个数学问题。

  这里是一个小故事:小明手里拿着三根不同长度的绳子,他想知道这三根绳子的长度是否相等。于是,他将三根绳子分别放在桌子上比较。经过比较后,小明发现这三根绳子看起来似乎长度相等。这让小明感到很惊讶,他开始思考为什么这三根绳子的长度看起来一样。这个问题困扰着小明,他决定继续探究原因。

  三、探索分数的基本性质

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?

  1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

  2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。

  分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

  3、将结论应用到

  (1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

  (2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

  (3)是怎样变化成与之相等的 的?

  (4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

  4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会更接近前者。不过,不能同时乘或除以0,因为0不能作为除数。

  5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

  有一位父亲将一块土地留给了他的三个儿子。大儿子认为这块土地是他的,二儿子认为这块土地是他的,三儿子也认为这块土地是他的。大儿子和二儿子觉得自己吃亏了,于是他们开始争吵。这时,阿凡提路过,询问了争吵的原因后,他笑了笑,给了他们一些建议,三兄弟因此停止了争吵。

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  学生通过观察和比较发现,当分子和分母同时扩大或缩小相同的倍数时,所得的分数的`大小并不会改变。这说明分数的大小取决于分子和分母的比例关系,只有在同向、同倍变化的情况下,分数的大小才能保持不变。这一规律也适用于其他分数,只要分子与分母按相同的比例变化,所得的分数大小仍然保持不变。因此,我们可以得出分数的基本性质:分子与分母是同时变化的,是同向变化的,是同倍变化的。

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国即将举办一场音乐会,分数大家族的节目是女声大合唱,演出时间紧迫,需要大家快速帮助合唱队的成员按照要求排好队伍。请尽快协助整理队伍,谢谢!

  要求:第一排是所有同学的分数值等于,第二排是所有同学的分数值等于,还有一位同学是指挥,他是小明。我选择小明作为指挥是因为他在团队合作中展现出了出色的领导能力和组织能力,能够有效地协调大家的行动,确保任务顺利完成。

  【通过练习,分数是数学中的一个重要概念,可以表示一个整体被等分成若干份的情况。分数由分子和分母组成,分子表示被等分的部分数量,分母表示整体被等分的份数。分数可以用来表示部分与整体之间的关系,比如$frac{1}{2}$表示一个整体被等分成两份中的一份。在分数的运算中,我们需要掌握分数的基本性质,比如分数的大小比较、分数的化简、分数的四则运算等。对分数的基本性质有深刻的理解可以帮助我们更好地应用分数解决实际问题。

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

分数的基本性质教学设计15

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子们最喜欢吃猴王做的香蕉饼了。有一天,猴王做了三块大小一样的香蕉饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友们,你知道哪只猴子分得多吗?

  讨论:三只猴子一起分到了三块大小一样的香蕉,它们都觉得自己分得的最多。经过仔细观察和比较,发现其实每只猴子分得的香蕉数量都是一样的。

  引导:聪明的猴王想出了一个聪明的办法来满足小猴子们的要求并且公平分配食物。他决定让每只小猴子依次从一堆食物中取一份,直到食物被取完为止。这样每只小猴子都有机会先后选择食物,确保了公平分配。这个方法既满足了小猴子们的要求,又让他们学会了合理分享。

  2.组织讨论。

  (1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等的。也就是说,三只猴子分得的饼的分数是14、28和312,它们之间是相等的关系。虽然它们平均分的份数和表示的份数不同,但是它们的大小是相等的。

  (2)猴王将三块大小一样的饼分给小猴子一部分后,剩下的部分大小是否相等呢?你还能找出另一组相等的分法吗?通过仔细观察我们可以发现:2/3=4/6=6/9。

  (3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并简化分数。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)学生们对几组分数进行了观察,发现分子和分母的变化规律是同时乘以相同的数。经过归纳总结,他们得出结论:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)分数的分子和分母之间存在一个共同的因数,当分子和分母同时除以这个因数时,得到的新分数与原分数大小相同。

  (板书:都除以)

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,分数的基本性质与商不变性质之间有密切的联系。在分数中,分子和分母之间存在着除数与商的关系,分子除以分母就得到分数的值。当我们进行分数的'乘除运算时,商不变性质起着重要作用。商不变性质指的是在乘除运算中,如果被乘数或被除数同时乘(除)以(除以)一个相同的数,那么乘积(商)不变。举例来说,如果我们有一个分数$frac{a}{b}$,其中$a$和$b$分别是整数,那么当我们将分子和分母同时乘以相同的数$c$,得到的新分数为$frac{ac}{bc}$。根据商不变性质,这两个分数是等价的,即它们代表同一个数值。这说明分数的基本性质中的分子和分母可以同时乘以一个相同的数,不改变分数的值。因此,分数的基本性质与商不变性质共同构成了分数运算中的重要规律。在进行分数的乘除运算时,我们可以利用商不变性质来简化计算,保证结果的准确性。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主体,教师是引导和组织学习的助手。在数学课堂上,教师的作用是激发学生的学习兴趣,引导他们积极参与到数学学习中来。为了实现这一目标,教师需要深入了解学习方法,建立起一种以探究为核心的学习模式。教师应该激发学生的学习动力,为他们创造充分的学习机会,帮助他们通过自主观察、讨论、合作、探究来真正理解和掌握数学知识和技能,充分发挥学生的主动性和创造性。一个重要的特点是设计学习方法,从大胆猜想、实验感知、观察讨论到总结归纳,都是为了促进学生自主探究和合作学习而设计的。

  1、学生在故事情境中大胆猜想。

  通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在练习的设计上,我们需要确保题目紧扣重点,设计新颖、多样,难度层次递进。首先,前两题作为基础练习,旨在帮助学生理解概念,全面了解他们对新知识的掌握情况。第三题则是在前两题基础上,巩固练习,加深对所学知识的理解。最后一题通过游戏形式,旨在加深学生对分数基本性质的认识,激发学生学习兴趣,活跃课堂气氛。这样设计不仅能照顾到学生的思维发展过程,同时也能拓宽学生的思维空间,真正做到学以致用。

  在教学过程中,我们应该注重引导学生进行多种方法的验证,而不仅仅局限于老师提供的几种方法。数学教学的目的不是仅仅教会学生问题的答案,更重要的是教会他们思考问题的方法和途径。因此,当让学生验证结论的正确性时,应该给予他们更大的自由度,让他们自己去寻找多种途径进行验证。这样不仅可以激发学生的求知欲和探索欲,也有助于培养他们的创新能力和解决问题的能力。

【分数的基本性质教学设计】相关文章:

分数的基本性质教学设计05-30

分数的基本性质教学设计08-11

《分数的基本性质》教学设计优秀05-09

分数的基本性质教学设计15篇06-25

分数的基本性质教学设计锦集(15篇)08-11

比的基本性质教学设计06-27

《分数的基本性质》说课稿12-14

比例的基本性质教学设计06-04

《比例的基本性质》教学设计05-16

分数的基本性质说课稿范文04-18