我要投稿 投诉建议

《体积单位》教学设计

时间:2024-08-04 12:15:29 教学设计 我要投稿

《体积单位》教学设计[精华15篇]

  作为一位杰出的老师,很有必要精心设计一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?下面是小编收集整理的《体积单位》教学设计,仅供参考,欢迎大家阅读。

《体积单位》教学设计[精华15篇]

《体积单位》教学设计1

  教学内容:苏教版义务教育教科书第19页例12、“练一练”、练习四第9~14题。

  教学目标:

  1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。

  2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。

  3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

  教学重点与难点:

  根据进率进行相邻体积单位的换算。

  教具:课件棱长是1分米的正方体纸盒

  教学过程:

  一、复习导入

  提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上.”

  学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.

  (2)展示学生的推导过程,可请1~2名学生代表他们的'小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.

  二、探究新知

  1、推导1立方分米=1000立方厘米

  (1)猜猜看,1立方分米等于多少立方厘米呢?

  你们能应用类似的方法推导出来吗?

  要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来.

  学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。

  (2)展示推导过程

  请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。

  (2)展示推导过程

  请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示.

  (3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)

  3.推导1立方米=1000立方分米

  (1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”

  (2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?

  (3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米

  教师用课件显示出来(或写在黑板上)。

  4.总结相邻两个体积单位间的进率。

  (1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

  (2)引导学生观察:1立方分米=1000立方厘米

  1立方米=1000立方分米

  并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。

  5.构建长度、面积和体积单位的计量系统.

  (1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?

  (长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的.)

  (2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第31页上的表格填完整,集体订正。

  三、练习应用

  1、完成练一练

  引导学生认真审题,独立解答。

  集体交流,指名说说换算思路。

  2、完成练习四第9题。

  学生独立完成表格。

  长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?

  3、完成练习四第10题

  学生独立完成,集体订正

  引导学生说说面积单位换算与体积单位换算的区别。交流

  引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的一般方法(师板书):

  高级单位的名数×1000=相邻的低级单位的名数

  4、完成练习四第11、12题。

  四、全课总结

  引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。

  本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写。

  五、作业

  练习四第13、14题

《体积单位》教学设计2

  教学目标:

  1.使学生感悟体积的空间观念,建立体积概念。掌握常用的体积单位的意义。学会用体积单位来描述物体的大小。能合理估计物体的体积的大小。

  2.通过观察、思考、探究、交流等学习活动,让学生经历知识的形成过程,体验和感悟空间观念。

  3.让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识。

  重点难点:

  形成体积的概念,理解和掌握常用的体积单位。建立空间观念、形成体积概念。

  教学准备

  1.教师准备:课件、2个大小一样的杯子、米、1立方米的实物架、2块大小不同的积木、2个体积差不多大的正方体和正方体、火柴盒20个、1立方厘米的小立方体、1立方分米的立方体。

  2.学生准备:每人4-5个1立方厘米的小立方体、1立方分米的立方体,直尺、奶箱子。

  教学过程

  一了解学生原有知识情况。

  1今天的数学课,我们要学习的内容是体积和体积单位。  2关于体积和体积单位你都知道些什么?

  根据学生汇报,相应板书。

  3看来,同学们对这部分知识并不陌生,有了一定的积累。

  老师相信,通过本节课的学习,你一定会对体积和体积单位有进一步的认识。

  二认识体积

  1.故事导入,初感空间。

  ①你们知道《乌鸦喝水》的故事吗?谁愿意给大家讲讲?

  ②这只聪明的乌鸦是怎么喝到水的?

  为什么把石头放进瓶子里,水就会升高呢?

  2.实验演示。

  实验一:感受物体占有空间。

  ①石头真的占了水的空间了吗?我们一起来做一个实验。

  看,老师手上拿的是两个大小相同的杯子。装有一样多的水,其中一个杯子放入一块积木,会出现什么情况?

  ②水为什么会溢出来呢?

  实验二:感受物体占空间有大小

  ①这回我放这个积木块(稍大),再把水倒入这个杯子,又会有什么现象发生呢?

  ②实验演示

  ③溢出的为什么比刚才的多?

  ④ 小结:也就是说,这2个积木块不但占空间,而且占的空间有大——有小。

  ⑥那在数学中,我们把物体所占空间的大小叫做物体的体积。

  ⑦什么叫体积?(指名、齐读、领读)

  ⑧举生活中物体占空间的'例子。

  三认识体积单位

  1制造矛盾冲突,引出体积单位

  ①有的物体可以通过观察就能比较出它们体积的大小,快看看哪个体积大?

  ②意见不统一了。看来光看是不能准确比较这两个盒子的体积了。

  ③怎么办?引出体积单位。

  2认识1 cm

  ①感受1立方厘米的大小:1 cm有多大呢?谁知道?

  ②课前老师让大家准备了体积是1 cm的学具,举起来我看看。

  注意听要求:请你们用格尺量一量这个正方体到每条棱到长是多少?

  ④那我们就可以说【棱长是1 cm的正方体,体积是1 cm】

  ⑤生活中哪些物体的体积是大约是1 cm?

  ⑥老师这儿有个火柴盒,你估计一下它到体积是多少cm?

  到底谁估得准呢?同桌2人用你们手中的1立方厘米的正方体摆一摆,算一算。

  ⑥汇报:

  3认识1dm

  ①刚才我们用棱长1 cm到正方体测出了火柴盒的体积,

  那下面我们还用这个1 cm到小正方体测测奶箱的体积。

  为什么?(刚才的方法不是挺好的吗?你看又是介绍方法、技巧的。)

  ②看来我们得需要一个稍大的体积单位,这个稍大的体积单位就是立方分米。

  ③ 1 dm又是怎样规定的呢?(结合课件)

  ④课前大家也准备了棱长是1 dm,也就是10㎝的正方体。

  ⑤生活中哪些物体的体积是大约是1 dm?

  4认识1m 。

  ①刚才,我们用体积是1 cm的正方体测量了火柴盒的体积;用体积是1 dm的正方体了奶箱的体积。

  现在老师想让大家用这些体积单位测量一下教室的体积。

  ②为什么?看来我们还需要一个更大的体积单位。

  ③ 1 m有多大呢?

  ④在这个体积是1 m的正方体框架里大约能容纳多少名同学呢?

  ⑤想不想知道答案?我们来验证一下。

  ⑥演示验证。

  ⑦ 1 m的正方体大约能容纳7人,那我们教室的体积有多少m呢?

  四应用知识,解决问题。

  1在横线上填出适当的体积单位。

  课件出示:

  一块橡皮的体积约是10 _________

  VCD机的体积约是4 _________

  集装箱的体积约是40 _________

  小结:在生活中,我们要根据大小不同的物体选择合适的体积单位。

  在你的生活中,你见过体积最大的物体的是什么?体积最小的物体是什么?

  2组成下面各图的每个小正方体的体积为1 cm,把每个图形的体积填在横线上。

  延伸:你还能用4个1 cm的小正方体摆出不同的图形吗?

  小结:也就是说无论物体什么形状,含有几个体积单位,它的体积就是多少。

  3用8个1 cm的正方体,摆出体积是8 cm的正方体或长方体,你能用几种摆法?

  四、总结

  除了用数体积单位个数的方法求物体的体积,有没有更快捷、更简单的方法呢?(难道求高楼大厦的体积也用数体积单位的方法吗?

  是啊,有,一定有。

  时间的关系,谜底下节揭晓!

《体积单位》教学设计3

  教案背景:

  本课面向五年级学生关于数学科的学习。课前准备:多媒体课件和有关的体积单位的模型。还要准备一些相关的物品。

  教学课题:

  1.使学生理解体积的概念,了解常用的体积单位,对体积单位的大小形成比较明确的表象。

  2.培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。教材分析:

  教材先通过“乌鸦喝水”的故事引入,让学生在讨论交流中感悟物体占用空间。然后通过实验,让学生观察和比较,说明不同的物体所占空间的大小不同,从而引入体积的概念。教材通过迁移类推引出物体的单位来的。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位,并介绍了这些体积单位的字母表示法。在此基础上,通过观察活动建立体积单位的表象。

  教学方法:

  对体积单位的认识可以通过模型观察,再建立表象。通过做一做进行区分。

  教学过程:

  一、认识体积

  1.激趣引入。

  师:同学们,你们听过乌鸦喝水的故事吗?

  生:听过。

  师:谁愿意来看着图给大家讲一讲。

  指名学生看图讲故事。(课件出示插图)

  师:乌鸦是怎么喝到水的?

  生1:乌鸦把石头放进瓶子,瓶子里的水就升上来了,这样乌鸦就喝到水了。师:为什么把石头放进瓶子,瓶子里的水就升上来了?

  引导学生说出石头占了水的空间,所以把水挤上来了。

  2.实验证明。

  师:石头真的占了水的空间吗?我们再来做个实验验证一下。

  教师拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生看会出现什么情况,为什么?

  生1:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。

  3.揭示体积。

  师:对,第二个杯子装不下第一个杯子的水,是由于石头占了水的空间。同学们请大家用手在书桌的`抽屉里摸一摸,说说有什么感觉。

  生摸并说感觉。

  师:请把书包放进抽屉,再用手摸一摸,现在又有什么感觉?

  生1:手在抽屉里活动起来不方便了。

  生2:手要从书包缝里才能放进去。

  师:这是为什么?

  生3:因为书包把抽屉的空间占了。

  师:对,刚才石头把水挤上来,书包把抽屉的空间变小了,都说明物体占有一定的空间。那你们知道石头和书包谁占的空间大吗?

  生4:书包占的空间比石头大,因为书包大,石头小。

  师出示下面的图,问:你们知道这些物体哪个占的空间大?

  学生回答后,师说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书)

  师:谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?

  学生回答。

  师:谁的体积大、谁的体积小呢?

  生:电视机的体积最大,影碟机的体积第二大,手机的体积最小。师:你们是怎么知道的?

  生:我是看出来的。

  二、引出体积单位

  师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?

  生:不好比较。

  教师用多媒体将它们分成大小相同的小正方体(如下图),问:现在你们能比较出它们的大小吗?

  生1:能,左边的长方体比右边的体积大。

  师:为什么?

  生1:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。

  师:左边的长方体和右边的长方体中的小正方体不一样大,行不行?为什么?生:不行。因为小正方体大小不同,就不好比较。

  师:为什么分成小正方体前不能直接比大小,分成小正方体后就能比较呢?引导学生说出:因为分成的每个小正方体的大小相同,这样就好比较了。师:所以要比较物体的体积大小,需要有一个统一的体积单位。在学习体积单

  位前,我们先回想一下,长度单位是用什么来表示的?面积单位是用什么来表示的?

  引导学生说出:长度单位是用线段来表示的,面积单位是用什么正方形来表示的。

  师:体积单位应该用什么来表示呢?

  学生讨论后,回答:应该用正方体来表示。

  师:对,体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)

  三、认识体积单位

  师:请你们猜一猜1 cm3、1 dm3,是多大的正方体?

  学生讨论后回答:我们想棱长是1 cm的正方体,体积是1 cm3;棱长是1 dm的正方体,体积是1 dm3。

  师:这个猜想对吗?看看书上是怎样说的。

  学生看书,证实自己的猜想是对的。

  师:请同学们在自己的学具中找出1 cm3的正方体。

  学生找到后,说一说自己是怎样找到的。

  生:我是用尺量的,量出棱长是1 cm的正方体,它的体积就是1 cm3。师:请你们找找,周围有哪些物体的体积接近1 cm3。

  生1:一个手指尖的体积近似于1 cm3。

  生2:计算机键盘的按钮的体积近似于1 cm3。

  师:请找出1 dm3的正方体,与1 cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1 dm3吗?

  生3:一个拳头的体积大约是1 dm3。

  生4:一个粉笔盒的体积大约是1 dm3。

  师:1 m3有多大?

  生:是棱长1 m的正方体。

  师:你能想像出1 m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1 m3有多大,它和你想像的大小一样吗?师:大家估计一下,它大约能容纳几个同学?

  生1:6个。

  生2:10个。

  验证(前排的12个同学钻到了正方体里。)

  师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1 m3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?

  生:4 cm3。

  师:为什么?

  生1:因为它是由4个体积是1 cm3的小正方体摆成的。

  师:(从粉笔盒的纸盒中拿出2盒粉笔)你能估计这个纸盒的体积是多少立方分米吗?

  生:大约是2 dm3。

  师:为什么?

  生:因为刚才你从这个纸盒里拿出了两盒粉笔,而每盒粉笔大约是1 dm3,2盒粉笔就是2 dm3。

  四、巩固练习

  指导学生做第40页“做一做”的第1、2题。

  五、小结(略)

  六、课堂作业

  指导学生完成练习七的第1~4题。

  教学反思:

  体积对学生来说是一个新概念。由平面图形到立体图形,是学生空间概念的一次发展,要通过表象建立深化认识,变抽象为形象。

《体积单位》教学设计4

  教学内容:北师大版课程实验教材《数学》五年级(下册)43-45页练习1

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米。

  2、了解立方厘米、立方分米、立方米之间的进率。

  3、掌握体积单位之间的换算方法。

  重难点:体积单位之间的换算。教学过程:

  一、引入:

  1、同学们,上节课我们学习了几个体积单位,谁知道是那几个吗?

  2、很好,那我们以前还学过关于长度和面积的单位,谁来说下常用的长度单位有那些?常用的面积单位有那些?

  3、那么长度单位、面积单位它们之间的进率是多少?

  4、你们想不想知道体积单位他们之间的`进率呢?

  二、研究探讨

  1、刚才我们知道了相邻两个长度单位之间的进率是10,也就是说1米=10分米,1分米=10厘米,而且我们知道1米=100厘米。那么谁来说下我们是怎么知道相邻两个面积单位之间的进率的呢?或者他们的推导方法是什么呢?

  2、对我们可以根据长度单位之间的进率来推导1平方米=1米×1米=10分米×10分米=100平方分米用同样的方法可以推导出1平方分米=1分米×1分米=10厘米×10厘米=100平方厘米

  3、我们知道1立方米=1米×1米×1米,那么大家想一想,用刚才的推导关系怎样得出平方米和平方分米的关系或者进率?

  4、好,大家想了一会了,谁来上黑板把你自己的想法用算式书写出来。

  5、表扬学生,并且书写正确的推导算式:1平方米=1米×1米×1米=10分米×10分米×10分米=1000立方分米。现在请同学们根据我书写的关系式推导出立方分米和立方厘米的关系。得出1立方分米=1000立方厘米。

  6、练习

  20立方米=

  立方分米

  1.2立方米=

  立方分米

  200立方分米=

  立方米

  30000立方厘米=

  立方分米

  7、我们刚才知道了相邻的2个体积单位之间的进率,那么不相邻的立方米和立方厘米他们之间是什么关系呢?我们先想下1平方米等于多少平方厘米呢?对,等于10000平方厘米,同样用推导关系可以推导出来。那么现在大家自己动手推导出立方米和立方厘米之间的进率。(巡视,对有困难的学生进行帮助指导)

  8、集体反馈结果。得到1立方米=1000000立方厘米。

  9、练习

  0.2立方米=

  立方厘米

  20000000立方厘米=

  立方米

  三、巩固练习

  1、完成课后练习2、3题。

  2、我们还学习了容积单位,下去同学们把他们之间的关系做出来,再根据体积和容积之间的关系,求出他们之间的进率。

  四、总结

  1、这节课我们学到了什么?

  2、单位换算的时候要注意什么?

《体积单位》教学设计5

  教学目标:

  1、了解并掌握体积单位间的进率。

  2、理解并掌握体积高级单位与低级单位间的化和聚。

  3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

  教学重点:体积单位进率和单位之间的互化。教学难点:复名数和单名数之间的转化。教学过程:

  一、复习准备

  1、教师提问

  (1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

  (2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

  2、口答填空,并说明算法和算理。

  (1)4米=()分米=()厘米

  (2)500厘米=()分米=()米

  3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的'体积单位间的进率和单位之间的转化。

  二、学习新课

  (一)认识体积单位间的进率

  1、认识立方分米和立方厘米的关系

  (1)指导学生自学,出示自学提纲

  A、棱长是l分米的正方体的体积是多少?

  B、棱长是l0厘米的正方体的体积是多少?

  C、1立方分米与1000立方厘米哪个大?为什么?

  (2)学生分组汇报.教师演示动画“体积单位间的进率l”

  2、推导立方米与立方分米的关系.

  (1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?用什么方法可以验证你的想法是否正确呢?

  (2)棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是l米的正方体可以划分成1000个棱长是l分米的小正方体,即1000个体积为l立方分米的正方体。板书:l立方米=1000立方分米

  (3)思考:1立方米等于多少立方厘米呢?

  3、小结:相邻的两个体积单位间的进率是l000

  4、完成书上想一想,填一填。

  三、巩固反馈.

  1、口答填空,说出计算过程

  0.9立方米=()立方分米

  540立方厘米=()立方分米

  38立方分米=()立方米

  4立方分米50立方厘米=()立方分米10.35立方米=()立方米()立方分米

  2、判断正误,并说明理由.0.5立方米=500立方厘米()

  2.6立方分米=2立方米60立方厘米()

  四、课堂总结.

  今天我们学习了什么内容?你还有什么不懂的地方吗?

  设计意图:体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:1.重视学生的自主猜测、主动探究。在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。 2.重视转化、推算等方法。为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。

  五、板书设计

  体积单位的换算1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升

《体积单位》教学设计6

  【教学目标】

  知识技能:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  数学思考:渗透类比思想,在观察、操作的过程中,进一步发展空间观念。

  问题解决:会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握相邻两个单位间的进率。

  情感态度:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中相关的实际问题。

  【教学重点】观察、操作中会进行体积、容积单位之间的换算。 【教学难点】推导体积单位间的进率和建立相应的空间观念。 【教学准备】课件、1dm3的正方体盒子、棱长为1厘米的正方体模型。

  【教学过程】

  一、复习导入

  1、复习体积和容积的概念。

  (1)说说常见的长度单位的名称,以及相邻两个单位的进率。

  (2)说说面积单位的名称,以及相邻两个单位之间的进率。 2、1平方分米=100平方厘米想想是怎么推导出来的?

  3、揭示课题:这课我们学习相邻体积单位间的进率。

  二、自主探索,验证猜测

  1、我们认识的体积单位有哪些?板书:立方米立方分米立方厘米

  提问:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)

  2、究竟哪种猜想是正确的呢?我们一起来验证一下。

  棱长为1dm的正方体盒子中,可以放多少个体积为1cm3的小正方体呢?把你的想法在小组内交流一下,然后摆一摆,算一算。(小组讨论、拼摆,推导相邻体积单位之间的进率,教师巡视,加以指导)

  3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。

  ②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。

  (电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。

  ④口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米

  4、提问:用同样的.方法,你能推算出1立方米等于多少立方分米吗?

  ①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。

  a.计算小正方体的个数;b.计算体积;c.1dm3=1000cm3,得到相邻的单位分米3和米3之间的进率是1000,即1m3=1000dm3.(板书:1立方米=1000立方分米)②口头回答:

  2立方米=?立方分米。 9000立方分米=?立方米

  5、补全表格,继续填写:

  单位名称

  相邻两个单位间的进率长度面积体积

  ①总结体积单位以及它们之间的进率

  ②说说它们分别是计量物体的什么的?③怎么来记忆它们相邻单位之间的进率?

  三、巩固深化

  1、出示书第45页的“练一练”第3题。学生先独立完成。交流你是怎样想的。

  小结:把高级单位化成低级单位,要用高级单位的数乘进率(小数点向右移动三位);把低级单位化成高级单位,要用低级单位的数除以

  进率(把小数点向左移动三位)。

  2、辨别

  有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米他换算得对吗?(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)

  3、下面每一组数中都有一个数与其他数不同,请找出它!1.02m

  1020dm

  10200L

  1020000cm

  5046dm

  5.046m

  5046000cm

  5046ml

  4、课本P45第2题。

  鼓励学生通过观察得出长方体的长、宽、高,再应用公式进行计算。

  5、棱长为2m的正方体盒子中,可以放多少个棱长为2dm的小正方体?

  让学生先想象一排可以摆几个,一层可以摆几排,共可以摆几层。

  6、课本P45第4题。

  7、课本P45第5题。

  四、课堂总结。

  通过这节课的学习,你有什么收获?【板书设计】

  体积单位的换算

  1分米3 = 1000厘米3

  1升= 1000毫升

  1米3 = 1000分米3

  1m3 = 1000 dm3

《体积单位》教学设计7

  教学目标:

  1、经历体积与容积的概念的建立过程,理解体积和容积的意义。感知常用体积和容积单位的大小,能正确地选择合适的单位进行相应数量的计量。

  2、在亲历感知,在感悟中形成对学科学习的内在兴趣。

  教学重点:

  教学难点通过参与试验、分析与尝试,掌握体积和容积概念,会确定体积和容积相应并能正确地把握体积的大小。

  教学方法动手操作、分析、合作

  教学准备每个小组准备一个盛水的量杯一个土豆。

  教学过程:

  一、导入新课

  师:我们已经学习了长方体和正方体表面积的知识,这节课,我们继续探究长方体和正方体的体积和容积。

  二、感受物体的体积

  1、分组实验

  方法:将土豆放入一个盛水的量杯中,注意记录放入前后的水位高度。

  猜想:量杯中的水位会发生什么变化?

  观察:通过对上面实验的观察,有什么发现?看到土豆放入时,水位上升了;取出时,水位又基本复原。

  思考:这个现象说明了什么?

  生:土豆占有空间,入水时,水会被挤开,造成水位上升;而取出时,土豆所占的位置空出,水于是又复原。

  2、体积的意义:

  师引导学生读书57页中间文字并结合实验同桌交流自己所理解的体积的概念。

  3、想一想:你还能用其它方法感受物体的体积吗?

  三、感受物体的容积

  1、①1箱牛奶的体积与6盒牛奶的体积比?(1箱牛奶体积大于6盒牛奶的体积。)②1盒牛奶的体积与1杯牛奶的体积比?(1盒牛奶的体积大于1杯牛奶的体积。)

  从上面的结论中你想到了什么?(整个容器体积大于内中装的体积)

  2、归纳容积的意义(板书)

  3、同桌互相举例说明物体的体积与容器,及其大小比较。

  四、体积单位

  1、长度、面积和体积基本单位的确定:

  棱长为1厘米的正方体的体积为1立方厘米

  棱长为1分米的正方体的体积为1立方分米

  棱长为1米的正方体的体积为1立方米

  感觉一下1立方米的大小

  (1)如果同学们在正方体模型中蹲着,会蹲下几个?

  (2)如果把书包放在这个正方体模型中垒起来,大约可以垒多少个?

  2、容积单位的确定:

  师指出:我把能容纳1立方厘米和1立方分米物体的容积的大小分别叫做1毫升和1升。

  在生活中计量液体的`体积常以毫升和升为单位。(让学生认真阅读理解5960页中的文字,然后同桌相互说一说)

  3、课堂活动:60页1、2题。通过课堂互动,让学生在搜索和交流中熟悉和增强体积和容积单位大小的实感。

  五、全课总结

  这节课你学会了什么?有什么新的感受?

  六、布置作业

  课本62-63页练习十二第1、2、5题。

  第二课时

  您现在正在阅读的《体积与容积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积与容积单位》教学设计教学目标

  1、掌握体积单位、容积单位之间的进率,能正确地进行单位间的改写。

  2、让学生参与单位间进率的探究中感知。深化认识与把握。

  3、感悟数学与生活息息相关,进而体验成功的乐趣。

  教学重点

  教学难点让学生借助对模型的分层探讨,理解常用体积单位和容积单位间的进率的由来,并掌握体积单位改写的方法。

  教学方法知识迁移法、练习法

  教学准备课件

  教学过程:

  一、复习导入新课

  1、复习体积与容积的意义

  一瓶矿泉水的标签写着:净含550ML,表示瓶中水的(容量、体积、容积)是550ML。

  让学生认真一议,弄清问题是什么。显然是针对水的,由于水不是容器,不可能有容量、容积之说。所以只能是体积。

  2、复习常见的体积单位

  回顾一下常见的体积单位

  3、导入新课

  板书:体积与体积单位

  二、合作探究

  1、例5的教学:体积单位进率的的探讨

  (1)课件展示例5:1立方分米=()立方厘米

  小组探究

  全班反馈:一排10个,一层100个,10层1000个。

  (2)探讨

  (3)填空

  (4)熟记。

  找出体积单位之间的进率的规律

  同桌互说互测

  2、例6的教学:体积单位之间的改写

  (1)课件展示例6;说一说,算一算

  先让学生议一议:

  所示问题的实质是什么?怎么解决?再独立完成,最后进行全班反馈

  反馈:问题的实质方法

  思路的再反思

  三、课堂活动:练习与操作

  1、小组合作:估一估,量一量

  2、练一练

  四、全课总结

  这节课主要学习体积单位,容积单位之间的进率和转化方法。

  五、布置作业

  4、6、7

《体积单位》教学设计8

  教学目标:

  使学生通过对具体事物的观察,了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。

  教学重点:

  了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。

  教学难点:

  感受1立方米、1立方分米、1立方厘米有多大。

  教学方法:

  一、教学体积。

  1、师生互动。

  感受教师占的空间大,学生占的空间小。

  2、小实验。

  感受大石头占的空间大,小石头占的空间小。

  3、观察比较。

  鞋盒占的空间大,火柴盒占的空间小。

  4、举例生活中物体所占空间的大小。

  5、总结体积的意义。

  二、教学体积单位。

  通过教师描绘两个物体组合的样子,猜一猜它们体积的大小,从而引出计量体积的大小要有一个统一的标准(体积单位)。

  课件展示三种体积单位的规定方法:

  棱长是1厘米的正方体的体积是1立方厘米。

  棱长是1分米的正方体的体积是1立方分米。

  棱长是1米的正方体的体积是1立方米。

  通过观察学具、举例子、测量实物创造以一体积单位为单位的组合体。

  分别教学1立方米、1立方分米、1立方厘米。

  让学生感知1立方米、1立方分米、1立方厘米的大小。

  教学过程

  导入:同学们,点、线、面、体构成了我们千变万化的数学图形,我们知道线有长短、面有大小,线的长短叫长度,面的大小叫面积,那体有大小吗?体的大小叫什么?带着这个问题,让我们一起走进今天的课堂。

  首先老师要和大家分享两个生活现象,考考你的眼力,同学们,有没有信心?

  (1)师:请一位同学和老师配合来一个换座游戏,用数学眼光从我们身上你能发现什么数学信息?

  师:老师坐在同学的座位上,你有什么感觉呢?

  生:地方小、挤

  师:为什么感觉挤呢?

  生:老师占的空间大,同学占的空间小(板书空间)

  (2)师:这是什么

  生:石头

  师:一大一小两块石头和液面相等大小一样的两个水杯,现在老师要把石头分别放入水杯中,猜想液面会怎样?注意观察。

  师:怎样

  生:液面都上升了

  师:为什么会上升

  生:因为石头都占有一定的空间

  师:上升的高度一样吗

  生:大石头占得空间大,液面上升的高度就大,小石头占得空间小,液面上升的高度就小

  (3)师:认真观察比较火柴盒、文具盒、鞋盒哪个占得空间大

  生:鞋盒

  师:在我们身边,还有比鞋盒所占空间更大的物体吗?

  生:书包、音响、凳子、课桌、讲台桌、教室、一排教室、教学楼、地球、宇宙…….

  (4)通过比较,我们发现物体不仅占有一定的空间,而且它们所占的空间有大小之分,我们就把物体所占空间的大小叫做物体的体积。(板书)

  师:物体所占的空间大,那它的体积就大,物体所占的空间小,那它的体积就小。

  师:选择一个你喜欢的物体,用上“体积”这个词描述一下它的大小。(同桌pk)

  生:鞋盒的体积大,文具盒的体积小

  讲台桌的体积大,课桌的体积小

  教学楼的体积大,教室的体积小

  师:说的真好

  老师这也有两个物体组合,想让你们比比它们的体积大小,请同学闭上眼睛听老师描述两个物体的样子,听完后迅速作出判断。

  师:第一个物体是由4个小正方体搭成的,第二个物体是由6个小正方体搭成的

  生1:6个的大,因为用的个数多

  生2:不确定,因为它们所用的小正方体的大小不确定。

  师:到底哪个大呢?看大屏幕(课件展示)

  师:6个的一定大吗?为什么用的个数多,体积却不大呢?

  生1:因为它用的小正方体小,而它用的小正方体大

  生2:因为它们所用的小正方体不一样大

  师:如果用数个数的方法比较它们的体积,需要有什么前提条件?

  生1:所用每个小正方体的体积一样大

  生2:选同样大小的小正方体去搭

  师:每个小正方体的体积一样大,也就是要建立一个统一的标准

  计量长度的标准是长度单位

  计量面积的标准是面积单位

  计量体积的标准就是体积单位

  看课件演示,像这样选同样大小的小正方体作为统一的体积单位,就可以更准确的计量出物体体积的大小

  师:常见的体积单位有立方厘米、立方分米、立方米(板书)

  每种体积单位是怎样规定的?我们先一起回顾面积单位的'由来。

  课件演示

  师:面积单位是用什么图形来表示的?(正方形),体积单位会用什么来得到呢?(正方体)

  一、师:拿出最小的那个小正方体,量一量它的棱长(1厘米)

  A、我们规定,棱长是1厘米的小正方体的体积是1立方厘米(课件)

  B、用手捏一捏,感觉它的大小,生活中见过这么小的物体吗?哪些物体的体积接近1立方厘米?

  生:骰子、电视按钮、电脑键盘、花生米、一节小手指……

  C、师:橡皮的体积大约是几立方厘米?估计一下,你是怎么估计的(找一学生到前面展示方法)

  师:生活中还有哪些物体的体积可以用1立方厘米的小正方体去测量

  生:粉笔、钢笔、火柴盒、文具盒……

  D、用你手中的教具创作一个以立方厘米作单位的物体组合,并说出它的体积,小组内互相比一比,看谁的体积大

  E、请同学用12个小正方体任摆一个物体,你知道它的体积是多大呢?(举起来)

  师:为什么同学拼的形状不同,体积却一样大呢?

  生:因为它们都用了体积是1立方厘米的小正方体12个

  二、现在老师想用这个1立方厘米的小正方体测量鞋盒的体积,合适吗?

  生:不合适,太小了

  师:拿出那个较大的正方体,量一量它的棱长

  A、我们规定棱长是1分米的正方体体积是1立方分米(课件)

  B、用手捧住它,感受它的大小生活中哪些物体的体积大约是1立方分米

  生:粉笔盒、小音箱、茶叶筒、双拳握在一起……

  C、鞋盒的体积大约有几立方分米?

  师:你是怎么测量的?生活中还有哪些物体的体积可以用立方分米作单位来测量?

  生:电视机、微波炉、投影仪、电闸盒、我家的整理箱

  D:小组合作,创作一个以立方分米作单位的物体组合

  生:我用了几个小正方体,体积是多少

  D、师:我想摆一个大正方体,至少用几个这样的小正方体,体积是多少?试试看

  三、用刚才认识的两个体积单位去测量教室的体积,行吗?

  师:比立方分米更大的体积单位是立方米,谁能仿照前面的规定说出1立方米有多大

  生:棱长是1米的正方体的体积是1立方分米(课件)

  师:双臂微微打开长约1米

  A、4人合作,围一围,创作一个1立方米的空间

  B、好,刚才同学们亲身体验了1立方米

  师:老师这还有3根一米长的木条,在墙角搭一个1立方米的空间,看看1立方米的空间可以容纳多少人,谁想来试试

  师:1立方米的空间可以容纳9个人

  C、1立方米的空间可真大,生活中见过这么大体积的物体吗?教室中有没有?除了讲台桌,还有哪些物体的体积约是1立方米(生答完展示课件)

  D、不要小看这1立方米

  1立方米的水可以倒满500个暖水瓶

  1立方米的木材可以做50张课桌的桌面或300个桌腿

  师:生活中哪些物体的体积可以用立方米作单位来测量

  总结:同学们,刚才我们认识了3种体积单位,为了方便,每种体积单位可以用字母这样表示(板书)

  谁能用一句话概括对每种体积单位的理解呢?

  生:边演示边叙述,立方厘米很小(只能用手指捏住)、立方分米较大(要用手捧住捧)、立方米最大(要用手臂抱住)

  师:同学们,学到这,你能告诉老师对体的大小你是怎么认识的

  生:体的大小就是物体所占空间的大小,也就是物体的体积

  师:而且计量体积的大小要有统一的标准,即体积单位,这就是我们今天所学的课题(板书:体积和体积单位)

  师:以后再去计量一个物体的体积时,首先根据这个物体所占空间的大小选择合适的体积单位,再看这个物体包含有多少个这样的体积单位,从而得到它体积的大小。

《体积单位》教学设计9

  教材分析:

  本节课是在学生认识了体积和容积的意义后教学的。本节教材的主要内容是认识体积、容积单位。教材先呈现了长度单位1厘米,面积单位1平方厘米和体积单位1立方厘米,并指出常用的体积单位有立方米、立方分米、立方厘米。然后教材安排了做一做活动让学生通过实际操作活动,体会1立方厘米、1立方分米、1立方米的实际大小。再让学生通过说一说把体积单位与生活中熟悉的事物联系起来,感受1立方厘米、1立方分米、1立方米的实际意义。后面在认识体积单位的基础上认识容积单位。教材的的编写体现出三个方面的意图:一是把体积单位与学过的长度单位、面积单位联系起来,体会统一单位的重要性,同时对这三种单位有一个直观的区别;二是注重实际操作,获得大量的感性经验;三是紧密联系生活实际,感受体积单位的实际意义。我的教学设计也围绕着这三方面来进行,为了让学生有充分的活动时间,我把体积单位与容积单位分开教学,第一课时教学体积单位。

  学生分析:

  小学生思维是具象的,小学高年级学生的思维正处于具体运算阶段向形式运算阶段的过渡发展期。因此,小学阶段学习的几何是属于经验几何或实验几何,这些内容的学习都是建立在小学生的经验和活动基础上的。对于小学生的学习方法而言,他们对几何图形的认识是通过操作、实验而获得的,几何的相关概念与关系的获得也是以操作为基础的,学生从一年级就开始接触几何,到五年级他们对几何教学中的动手操作活动并不陌生,并有一定的动手操作能力和经验,但本班学生对操作活动中的自律性还不是很强,教学中应注意对操作活动时纪律的控制。

  教学目标:

  1、常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。

  2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。

  3、引导学生经历观察、类比、举例、等学习活动,积累数学活动的经验。

  4、通过数学,增强空间观念,发展空间想象力。

  教学重点:

  帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积。

  教学难点:

  能联系已有知识正确区分长度单位、面积单位、体积单位,清楚各自含义。

  教具、学具准备:

  教师准备棱长1厘米和1分米的正方体各一个,1立方米演示模型架。学生准备棱长1厘米、1分米的正方体各一个,米尺1根。

  教学媒体:

  ppt课件

  教学过程

  一、复习引入

  1、填单位:

  老师身高155( ) 教室的面积为48( )

  游泳池水深2( )占地面积250( )

  师:这是我们以前学过的单位,它们是什么单位同学们还记得吗?

  课件出示:长度单位 面积单位 1厘米的长度 1平方厘米的大小。

  2、师:上节课我们认识了物体的体积,你们还记得什么是体积吗?那么体积的单位又是什么呢?

  二、教学新课

  师:常用的体积单位有立方厘米、立方分米、立方米。

  1、认识1立方厘米

  (1)出示1立方厘米模型:这就是1立方厘米,让学生拿出自己做的棱长是1厘米的正方体,看看和老师的1立方厘米是否一样大。

  (2)分组观察﹑探究交流,然后汇报,你知道了什么?

  操作要求:

  看一看:1立方厘米的体积有多大?

  量一量:1立方厘米正方体棱长是多少?

  说一说:什么是1立方厘米?

  想一想:体积是1立方厘米的物体有多大,把它印在头脑里。

  举一举:生活中哪些物体体积约为1立方厘米(如蚕豆﹑玻珠、手指末节等)

  拼一拼:2立方厘米、5立方厘米、10立方厘米

  (3)汇报交流。

  (4)教师小结:棱长是1厘米的正方体,体积是1立方厘米。板书记法。

  2、认识1立方分米

  (1)出示1立方分米模型,告诉学生这就是1立方分米。

  (2)学生拿出学具分组观察、探究、汇报,你知道了什么?

  看(大小) 量(长短) 说 (概念) 想(有多大)

  举一举:(粉笔盒、菠萝等)

  拼 (体积)

  (3)汇报交流,教师小结并板书。

  3、认识1立方米

  (1)根据以上的体积单位推测,什么样的体积是1立方米(板书)

  (2)我用三把米尺在墙角搭了一个体积是1立方米正方体框架,让学生估一估能容纳多少个学生,然后试一试。

  (3)8个学生一组,用米尺搭一个1立方米的.空间,看一看,把一立方米的大小印在头脑里。

  (4)哪些物体体积约为1立方米?(太阳能水塔、讲台等)

  5、比较长度单位、面积单位、体积单位的不同

  (1)课件在长度单位和面积单位的旁边出示1立方厘米的图形。

  (2)让学生观察有什么不同。

  (3)小结:长度单位表示距离大小,面积单位表示表面大小,体积单位表示空间大小。

  三、巩固练习,提升理解

  您现在正在阅读的《体积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积单位》教学设计1、完成练一练第1题。

  2、选择适当的单位名称填在括号里。

  (1)五(1)班教室占有空间约是150( )。

  (2)一个成人鞋盒体积约是6( )。

  (3)一块橡皮的体积约是8( )。

  (4)一把椅子高90( )。

  (5)一张单人床的面积约是2( )。

  3、连线

  一台洗衣机的体积约为 40立方厘米

  书包的体积 0.3立方米

  碳素墨水盒的体积 20立方分米

  4、说说身边物体的体积

  四、课堂小结:

  说说本节课有哪些收获。

  教后反思:

  在本节课的教学中,我注重从小学生空间观念形成的心理特点方面手,做了以下尝试,取得了不错的效果。

  1、注重新旧知识的联系与比较

  教学初我让学生通过填单位回顾旧知,知道测量长度需要用长度单位,测量面积需要用面积单位。然后自然而然就引出测量体积就需要体积单位了。并在教学完体积单位后与长度单位、面积单位进行了比较,让学生从直观形象到内在含义真正理解体积单位。

  2、充分利用直观教学,注重学生实践体验

  学生空间观念的形成具有很强的直观性,比较感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、类比等学习活动,帮助学生并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲,让学生在活动中理解应用数学知识解决实际的。

  3、注重学习方法的迁移

  在三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,并学习1立方厘米。然后将主动权交给学生,让学生利用1立方厘米的方法在小组内自主活动,1立方分米,最后1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的兴趣。

  4、注意学生身边的数学知识

  在让学生感受每个体积单位有多大时,我让学生找一找身边哪些物体的体积大约是1立方厘米、1立方分米、1立方米,学生有的提到我的一个指头头大约是1立方厘米,我随机抓住这一教学资源,追问道:你们每个手指大约又是多少立方厘米呢?在例举1立方分米时,学生说粉笔盒的体积大约1立方分米,有一次我买的烤红薯大约1立方分米等等。在感受1立方米有多大时,我用三把米尺在墙角搭了一个体积是1立方米正方体框架,并让学生估一估能容纳多少名同学,然后亲自让同学们站到里边看一看,然后分组搭1立方米的框架。通过例举与体验,不但让学生体会到身边处处有数学,而且也有利于促进学生每个体积单位大小的建立。

《体积单位》教学设计10

  教学目标

  知识目标

  使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解相邻的两个体积单位间的进率是1000的道理。

  能力目标

  能够采用对比的方法,记忆并区分长度单位、面积单位和体积单位。

  情感目标

  培养学生的学习迁移能力和探究能力,使学生会应用“猜想-验证”的方法解决数学问题。

  重点

  体积单位的进率。

  难点

  体积单位的进率的化聚。

  教学过程

  一、复习引入

  1.填空:

  ①长方体体积=();

  ②正方体体积=()。

  ③常用的体积单位有()、()、();

  师:你知道每相邻的两个体积单位之间的`进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

  合作探究

  二、课程内容

  1.体积单位间的进率。

  (1)出示:1个棱长是1分米的正方体木块。

  图中是一个棱长为1分米的正方体,体积是1立方分米。想一想,它的体积是多少立方厘米呢?

  提问:

  ①当正方体的棱长是1分米时,它的体积是多少?

  ②当正方体的棱长是10厘米时,它的体积是多少?

  ③而1分米是多少厘米?1立方分米等于多少立方厘米?

  小组合作填表:

  《体积单位间的进率》教学设计

  小组汇报结论:1立方分米=1000立方厘米

  同理得出:1立方米=1000立方分米

  小结:相邻两个体积单位之间的进率都是1000。

  (2)将长度单位、面积单位、体积单位加以比较:

  先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

  (3)学习体积单位名数的改写。

  思考:①怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

  ②怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

  出示例题3:3.8立方米是多少立方分米?2400立方厘米是多少立方分米?

  写成如下形式:

  3.8立方米=(3800)立方分米2400立方厘米=(2.4)立方分米

  ⒊出示例4:看见你得到哪些信息?

  ⑴这个包装箱的体积是多少?

  V=50×30×40

  =60000cm3

  =60dm3

  =0.06m3

  ⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

  如果出现这样答,你必须选择那个答案?

  答:这个牛奶包装箱的体积是m3。

  ⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算。

  拓展应用

  一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

  总结

  小结今天学习的内容。

  作业布置

  在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

  板书设计

  体积单位间的进率

  1立方分米=1000立方厘米

  1立方米=1000立方分米

《体积单位》教学设计11

  教学目标:

  1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  2、在观察、操作中,发展空间观念。

  3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。教学准备:

  体积是1cm的小正方体,容积是1dm的小正方体,多媒体课件按照课前准备要求摆放好学习用品,然后坐端正,准备上课。请学生把正方体放在小组桌子中间、其它学习用品放在左上角教学过程:

  一、复习回顾,导入新课

  师:上课,同学们,马老师了解到咱们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。

  师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)师:(读题提问)常用的体积单位有哪些?(生齐答)师:(继续提问)容器内的液体量一般使用哪些单位?

  33(生齐答)师:还有补充吗?(生思考后①回答正确,师,表扬,思考真全面,重复说;②回答不出来,师提示:如果液体的量比较大,比如游泳池、蓄水池中的水?)

  师:(读题,举例说明1m,1dm,1cm分别有多大)

  生:举例说明,(每个举例两、三个)师:这个例子很恰当,你真聪明,直接拿了桌面上的物体

  师:我们接着来看填一填的答案。师读题生:10cm、10dm。

  师:也就是说,相邻长度单位间的进率是()生:10

  师:接着来看,应该填多少生:100

  师:相邻面积单位间的进率是()生:100

  那么,在猜一猜中,你填的是多少?生:1000

  师:确定吗?生:确定

  师:没有猜不是1000的吗?生:没有

  师:那它们间的进率是不是1000呢,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。到此大约6分钟

  二、自主探究,获取新知师:同桌两人合作,一起观察、分析课前准备的正方体,怎样能够说明1立方分米=1000立方厘米,听明白要求了吗?开始吧(音乐播放,学生探索大约5分钟)

  师:哪位同学来说说你们探索的结果?生举手师:进率是1000吗生:是

  师:说说你的理由,生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,可以放入1000,所以1立方分米=1000立方厘米。

  师:能不能说说可以怎样放?

  生:一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,所以就有1000个,师:听明白了吗?

  哪位同学再来说一说,还有同学不明白,谁再来说一遍,生复述

  师:由于受时间和条件的限制,我们不能一个个摆,所以老师用课件演示一遍摆的过程,老师操作,大家一起来数一数。

  师:进率是1000吗,生:是师:说说你的理由

  生1:(师提示,拿着手中的正方体)棱长1分米的正方体,体积是1分米×1分米×1分米=1立方分米;棱长10厘米的正方体体积是10厘米×10厘米×10厘米=1000立方厘米。由于1分米等于10厘米,所以1立方分米和1000立方厘米只不过是单位不同,表示的正方体的大小是相同的。生2:1分米等于10厘米,所以这两个正方体是一样的,师,能不能说的完整一些,生3:……生4:……

  师:你分析得真棒,听明白的举手,再请一位同学来复述一遍。(如果没有师逐步提示)这两个正方体的什么是一样的生:棱长是一样的,师:所以体积也是相等的,棱长1分米的正方体体积怎么计算生;1×1×1=1立方分米;

  师:棱长10厘米的正方体,体积怎么计算生:10×10×10=1000立方厘米

  而他们的体积又是相等的,所以1立方分米等于1000立方厘米。师:我们也可以通过计算分析的方法来研究它们之间的进率,明白了吗?师:还有别的方法来说明进率是1000吗?此过程5分钟

  师:这是1立方厘米的`正方体,这是容积是1立方分米的正方体,我们现在来摆一摆。

  师生一起数:1、2、3……10

  师:现在是1排共10个了,我们接着摆师生一起数:20、30、40……100

  师:现在是一层一共100个了,我们接着摆师生一起数:200、300……1000

  师:正好1000个,这样就验证了大家的猜想是正确的。师:马老师有一个问题,在前面的学习中我们学习了升和立方厘米的关系,毫升和立方厘米的关系,现在你知道升和毫升的关系吗?

  生:1000,师:说说你的想法

  生:1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升。

  师:你的逻辑推理能力真厉害,大家同意吗?

  师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000还有哪一个体积单位我们还没有研究呢?生:立方米

  师:好的这一个问题就交给你自己来解决了,请你独立解决课堂学习卡中的第二项,独立探索

  (学生独立探索)

  老师看大部分同学都完成了,我们一起来回答吧,师读题,生填空

  师:这样大家得出了立方米和立方分米之间的进率,太棒了下面我们来小结一下

  也就是说相邻的体积单位间的进率都是1000,一定是相邻的体积单位,还有升和毫升的进率也是1000,下面请你根据所掌握的知识完成课堂学习卡的第三项,填表

  生:汇报答案

  师:这就是我们这节课要掌握的第一个知识,体积单位间的进率,具备了这一知识,我们就可以进行体积单位间的换算,板书(的换算)。

  三、巩固练习,应用新知请大家独立完成师读题,生汇报

  生5000,师:怎样得到5000的生:5×1000生1350,师:怎样得到1350的,生:1.35×1000生1200或者1200000,师:到底是多少呢?生讨论得出1200000

  生2.8,师:怎样得到2.8,生:2800÷1000生0.72,32.5师:怎样得到

  师:能不能用自己的话总结一下单位换算到额规律生尝试总结,汇报

  师:展示小结,建立认知结构

  师:看来同学们掌握的真不错,还有没有不明白的?师:我们来解决一个生活中的实际问题先猜一猜,买哪种瓶装的比较划算?生:大瓶的,师:说说你猜测的依据

  到底是不是呢?请你在练习本上来具体算一算,再进行比较生:列算式进行比较

  师巡视,寻找不同方法的同学,到前面进行展示。师:哪位同学看明白了这种方法,点名来讲一讲生讲解、不能讲解的师逐步提示讲解。师:老师把以上几种方法中常用的两种总结如下,我们一起来看一看方法1:比较每毫升牛奶的价钱方法二比较每元钱可以买牛奶的量

  四、课堂小结,回顾新知

  通过今天的学习,你有哪些收获,谈一谈生:进率,体积单位的换算

  师:有关今天的学习还有什么疑问吗?五,布置作业

  老师这里有一个问题留给大家思考。

  电视机包装箱的长是60米、60分米,还是60厘米?宽和高呢?箱子的体积是多少?

  好今天这节课我们就学习到这里,下课!

《体积单位》教学设计12

  教材分析:

  这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11 让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。

  教学目标:

  1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.

  2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.

  3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.

  教学准备:

  棱长为1分米的正方体以及棱长为10厘米的正方体挂图。

  教学过程:

  一、 复习导入

  1、教师提问:

  (1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米

  (2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米

  (3)我们认识的'体积单位有哪些?

  板书:立方米 立方分米 立方厘米

  提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率

  【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】

  二、自主探索 验证猜测

  1、教学例11。

  (1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

  (2) 提问:这两个正方体的体积是否相等?你是怎样想的?

  (引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

  (3) 用图中给出的数据分别计算它们的体积。

  学生分别算一算,然后在班内交流:

  棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)

  棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)

  (4) 根据它们的体积相等,可以得出怎样的结论?

  1立方分米=1000立方厘米(板书:=)

  (5) 谁来说一说,为什么1立方分米=1000立方厘米?

  2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?

  学生在小组里讨论。(板书:立方米=1000立方分米)

  班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?

  引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。

  3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

  【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】

  三、巩固深化

  1、 出示书第30页的“练一练”。

  学生先独立完成。

  交流你是怎样想的。

  小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。

  【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】

  2、 出示练习七第1题。

  学生独立完成表格。

  班内交流:说说长度、面积和体积单位有什么联系?

  而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?

  3、 出示练习七的第2题。

  学生先独立完成。

  交流:你是怎样想的。

  指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。

  4、 出示练习七的第3题。

  学生独立完成。

  交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。

  5、 出示练习七的第4题。

  学生独立完成后集体交流。

  【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】

《体积单位》教学设计13

  教学目标:

  知识目标:

  结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  能力目标:在观察、操作中,发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。

  教学策略:教师引导学生进行自主探究。

  教学准备:图表课件

  教学过程:

  一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。

  二、教学新知:

  1、让学生利用手中的教具摆出正方体。

  1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。

  2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。

  3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。

  单位

  相邻两个单位之间的进率

  长度

  米、()、厘米

  10

  面积

  米2、()、厘米2

  体积

  米3、()厘米3

  4、课堂练习

  (1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。

  (2)可以让学生通过计算来分析、比较从而解决问题。

  通过计算第三种包装比较合算。如果学生有其他的`比较方式,只要合理,教师应给予肯定和鼓励。

  (3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)

  (4)先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)

  四、课堂小结:

  学习了这节课,同学们有什么感受和体会?

  板书设计:

  1分米3 = 1000厘米3

  1升 = 1000毫升

  1米3 = 1000 分米3

  1m3 = 1000 dm3

《体积单位》教学设计14

  设计说明:

  《体积单位》是在学生认识了体积的含义以及体积守恒性的基础上进行教学的,在教学设计中,我主要进行了以下思考:

  首先,教材对体积单位的设计,是将常用的三个体积单位——立方厘米、立方分米和立方米分开进行教学的。我觉得这样设计不利于学生从整体上建立对三个常用体积单位的实际大小的表象认识,所以在设计教学时,我将教材内容进行了处理和整合。通过提供充分的直观素材,利用观察、触摸、举例等各种活动,将三个体积单位结合起来,对比教学。让学生积累感知,建立1立方厘米、1立方分米和1立方米的实际大小的空间概念,使学生在脑海里能够真正形成表象,也为后面的学习做好铺垫。然后再回到教材中,重点学习立方厘米,深化对体积单位的认识,进一步理解“物体含有多少个1立方厘米,体积就是多少立方厘米”。

  其次,在新知教学中,我采用了分层推进的教学策略。首先出示大小不同的积木块,通过比较体积的大小,逐步形成矛盾冲突,得出计量物体的体积,必须要有一个统一的标准,从而引出了体积单位。然后分层对三个常用的体积单位进行教学。在学习立方厘米时,老师先出示1立方厘米的正方体学具,通过让学生摸一摸、量一量、比一比、举个例子等学习活动,认识1立方厘米,建立1立方厘米的表象。然后让学生利用认识1立方厘米的方法在小组内自主活动,来认识1立方分米,最后认识1立方米。老师最后再对这三个体积单位进行对比总结,让学生思考这三个体积单位分别是用来计量怎样的物体的体积的,从而从整体上加以区别。

  再者,练习设计中,我设计了一道看图填合适的单位的题目,目的是让学生对学过的三个常用的体积单位进行巩固,加深理解。另外,在处理课本第30页练习第4题时,教师引导学生得出下面的数方块的方法:分层数,用第一行的块数乘行数,得出第一层的块数,再乘层数,从而得出整个图形的块数。这种方法实际上就是长乘宽乘高,为后面学习长方体体积的计算作一个铺垫。

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。

  2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。

  3、引导学生经历观察、类比、举例、操作等学习活动,积累数学活动的经验。

  4、通过数学训练,增强空间观念,发展空间想象力。

  教学重点:

  初步建立1立方厘米、1立方分米、1立方米的体积观念。

  教学难点:

  帮助学生建立体积是1立方厘米、1立方分米、1立方米的大小的表象,能正确应用体积单位估算常见物体的体积。

  教学准备:多媒体课件、体积为1立方厘米和1立方分米的正方体学具以及体积为1立方米的正方体教具。

  教学过程:

  一、复习引入

  1、师:上节课我们一起认识了物体的.体积,那么什么叫做物体的体积呢?

  (物体所占空间的大小叫做物体的体积。)

  2、师:我们还知道,物体不仅有体积,而且不同的物体,体积的大小可能是不一样的。今天我们继续来研究体积的有关知识。

  二、分层学习

  1、感悟统一体积单位的必要性。

  (1)出示大小差别较明显的教具,让学生比较体积的大小。

  (学生可直接用眼睛分辨出体积的大小)

  (2)出示大小差别不明显的长方体和正方体学具,比较体积的大小。

  师:我们还能用眼睛分辨出这两个物体的大小吗?该怎样比较呢?

  (师引导学生得出:可以将两个物体分割成若干个大小相同的小正方体,再比较小正方体的个数,从而得出物体体积的大小。)

  (3)出示两块积木,一块是由8个小正方体拼成的,另一块是由9个小正方体拼成的,两块积木所含小正方体的大小不同。

  师:你觉得这两块积木哪一块的体积大一点?

  (学生自由发表意见)

  师:为什么现在不能确定两块积木的大小呢?

  生:因为每块积木所含有的小正方体的块数不同,每块小正方体的大小也不同,不好比较。

  师:也就是说需要有一个统一的标准!就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。(板书:体积单位)

  2、认识常用的体积单位。

  师:常用的长度单位和面积单位分别有哪些?

  师:想知道常用的体积单位有哪几个吗?

  分别是:立方厘米、立方分米、立方米。(板书)

  师:我们知道长度单位用线段来表示,面积单位用正方形来表示,你们猜想一下,体积单位应该用什么图形来表示呢?

  生:用正方体表示。

  (1)认识1立方厘米

  ①出示棱长1厘米的正方体,告诉学生这个正方体的体积就是1立方厘米,然后让学生摸一摸,再测量验证:它的棱长是多少?

  ②得出结论:棱长1厘米的正方体,体积是1立方厘米,介绍字母表示法。

  ③引导学生比划感受1立方厘米的大小。

  ④举例:找找看,我们身边哪些物体的体积接近1立方厘米?

  反馈:骰子、一节手指头等的体积接近1立方厘米。

  ⑤回顾小结:刚才我们通过摸一摸、量一量、举个例子等方法认识了1立方厘米,

  我们能不能用同样的方法来认识1立方分米?

  小组活动:认识1立方分米。

  (2)认识1立方分米

  ①出示棱长1分米的正方体,这个正方体的体积就是1立方分米,学生说说它的概念。

  ②引导学生比划感受1立方分米的大小。

  ③我们身边哪些物体的体积接近1立方分米?

  学生举例。

  (3)认识1立方米

  ①提问:想一想,怎样的正方体体积是1立方米?

  生:棱长为1米的正方体,体积就是1立方米。

  师:想象一下,棱长是1米的正方体有多大呢?

  ②观察1立方米正方体的实物,派学生代表钻一钻,感受1立方米的大小。

  总结:

  师:刚才我们一起认识了三个不同的体积单位,同学们,这三个单位通常是用来计量怎样的物体的体积的?

  三、基本练习

  1、看图填合适的单位名称。

  一块巧克力的体积约是8( )

  一台电脑显示器的体积约是35( )

  运货集装箱的体积约是70( )

  一本新华字典的体积约是0.5( )

  三峡工程第二次截流中抛投的一块大石料的体积约是3( )

  2、师:刚才我们认识并学习了这三个不同的体积单位,那么怎样用这些体积单位来计量物体的体积呢?

  出示2个1立方厘米的正方体,用它搭出一个立体图形。这个图形含有两个体积单位,它的体积就是2立方厘米,也可记作2cm3。

  如果用3个1立方厘米的正方体搭立体图形,它的体积又是多少呢?

  要是用4个、5个、……呢?体积又是多少,可以得出什么结论?

  结论:物体含有多少个1立方厘米,体积就是多少立方厘米。(板书)

  3、完成课本30页练习3和4

  四、拓展练习(机动)

  (可让学生用正方体模型摆一摆)

  五、课堂总结(略)

  附板书设计

  体积单位

  立方厘米(cm3):棱长1cm的正方体的体积是1cm3

  立方分米(dm3):棱长1dm的正方体的体积是1dm3

  立 方 米 (m3):棱长1m的正方体的体积是1m3

  物体含有多少个1立方厘米,体积就是多少立方厘米。

  教后反思:

  在本节课的教学中,我注重从小学生空间观念形成的心理特点方面入手,做了以下尝试。

  一、充分利用直观教学,帮助学生形成空间观念。

  学生空间观念的形成具有很强的直观依赖性,比较容易感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、测量、类比等学习活动,帮助学生认识并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验下认识体积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲望,让学生在活动中理解应用数学知识解决实际的问题。

  二、注重学习方法的迁移。

  在认识三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,认识并学习1立方厘米。然后将主动权交给学生,让学生利用认识1立方厘米的方法在小组内自主活动,认识1立方分米,最后认识1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。

  三、分层中及时匹配练习,使所学知识得到有效地巩固。

  学生学完常用的三个体积单位以后,我设计了一道看图填合适的单位的练习,目的是让学生对所学的知识进行及时的巩固,加深理解。然后进入下一个环节,重点认识1立方厘米,深化对体积单位的认识。在学生理解了“物体含有多少个1立方厘米,体积就是多少立方厘米”以后,又及时跟进了一组练习,再一次对所学的知识进行有效的巩固。这样层层递进,每个层次都匹配相应的练习的做法,有利于学生及时加深对所学知识的理解,了解知识间的内在联系。另外,在处理课本练习第4题时,老师引导学生得出分层数方块的方法,为后面学习长方体的体积计算作了一个铺垫,注重了知识的前呼后应。

  当然,本节课还存在很多方面的不足,如教师的语言,课堂节奏的调整,关注学生的情感等方面还做得不够。千里之行,始于足下,我会本着积极探索的精神,在教育教学这片热土上继续奉献自己的光和热。

《体积单位》教学设计15

  教学内容: 教科书第111---113页相应的“做一做”,练习二十九的第1~3题、

  教学目的:

  1、通过观察、实验,使学生初步建立“体积”的概念,知道计量体积,要用体积单位、认识常用的体积单位:立方米、立方分米、立方厘米、知道1立方厘米、1立方分米、1立方米的实际大小、

  2、使学生知道计量物体的体积,就要看它所含体积单位的个数,建立关于体积大小的空间观念、

  3、使学生初步了解体积单位与长度单位、面积单位的区别和联系、

  4、在学生学习活动中体现阶梯式评价。

  教具、学具准备:

  1、教师准备:

  (1)实验器材:量杯、石块、水、

  (2)1立方厘米、1立方分米的实物模型,用3根1米长的木条钉成的直角架、

  (3)大小不同的长方体、正方体实物、

  (4)多媒体课件、

  (5)桌椅摆放:六组,每两组对称形。

  2、学生准备:

  (1)1立方厘米、1立方分米的模型、

  (2)长方体(正方体)纸盒或实物、

  教学过程:

  一、谈话导入

  同学们,我们五年三班的同学特别喜欢参加学校举行的各种各样的比赛,是吗?而且每次都取得不凡的成绩。作为你们的班主任老师,我感到特别的骄傲。那么现在,我们就来一个小小的比赛,好不好?

  第一轮:比眼力。依次发四条长短不同的线段。指出先谁拿,后一起拿。

  第二轮:比运气。教师出示四个不同的平面图形。学生随意点。

  第三轮:比判断力。依次发四个不同的长方体、

  谈话:比较两条线段的长短,比较两个平面图形的大小,比较两个立体图形的大小、它们的意思相同吗?

  通过谈话后,引出“长度”、“面积”、“体积”等名称,提出问题:什么叫做物体的体积呢?(板书课题)

  二、学习新课

  看到这个课题,你有什么要问吗?

  什么叫体积?体积单位有哪些?体积和表面积什么不同?(师板书:意义、单位、体积和表面积的区别)

  师:提得很好,下面我们就来共同探讨这些问题。

  (一)、建立体积概念

  那么,什么叫做物体的体积呢?你们想怎样得到这个问题的答案?自选学习方式。

  教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸入玻璃杯的水中、教师:注意观察放入石头后水面有什么变化、教师将石头提起,再放入水中一次、然后让学生说一说观察的结果、学生:放入石头,水面上升、教师:把石头放入水里后,水面为什么会上升呢?请几位学生回答后,教师指出:石头占有一定的空间,放入水里后,使得水所占的空间变大了,所以水面就上升了、

  (1)实验:引导学生观察实验过程,注意实验过程中量杯里水位的变化情况、想一想,这说明了什么?

  学生做一个实验,大家还要仔细观察,动脑筋思考、装入满满一杯沙子、然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果、学生:沙子多出来了、大家想一想,为什么沙子会多出来呢?让几位学生说一说自己的想法、在学生发言的基础上概括、

  (2):因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了、

  (3)(自学)在水杯中放入一块石头,在水面处做一个黄色记号。

  拿出石块后,再放入一大些的石块,在水面处做绿色记号。

  观察讨论:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?

  汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升。石块大占据空间大,水面上升得高;石块小占据空间小,水面上升得低。

  讨论、归纳:物体占有空间、物体所占空间有大有小、

  (2)教师出示大小不同的长方体、正方体实物、让学生观察,说一说,哪个物体所占空间较大,哪个物体所占空间较小?或者说哪个物体的体积较大,哪个物体的体积较小?

  让学生用自己的话说一说“体积”的意义、

  结论:物体所占空间的大小叫做物体的体积、教师再进一步讲解、教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间,等等(板书)

  (3)巩固、看教科书第111页的“做一做”、

  哪堆木块的体积大?哪堆木块的体积小?并说明理由、

  (二)认识体积单位

  请同学们观察自己带的长方体或正方体、同学之间可以互相比一比,你们能确切说出它们的体积大小吗?

  教师指出:在实际生活和生产中,有时只需要凭感觉判断出谁大谁小就可以,但是有时也需要知道物体到底有多大,这就要我们精确地计量物体的体积。计量体积就要用体积单位,常用的体积单位有立方厘米、立方分米、立方米(板书)下面我们就认识一下这些体积单位。

  1、认识1立方厘米。

  (1)教师出示一块1立方厘米的模型井指出:这就是体积为1立方厘米的正方体。

  (2)分组观察探究,然后汇报:你知道了什么?(每四个人一组,每组一个1立方厘米的正方体模型)

  引导学生:

  看一看:1立方厘米的体积比较小,是正方体。

  量一量:1立方厘米的正方体的棱长是1厘米。

  说一说:棱长1厘米的正方体体积是1立方厘米(板书)

  想一想:体积是1立方厘米的物体比较小。

  引导学生说出:体积大约是1立方厘米的物体,如:蚕豆等物体,再引导学生用手势表示一个食指尖大约是1立方厘米。

  议一议:计量体积使用立方厘米比较恰当的物体。(手指尖、玻璃珠、骰子)

  2、认识1立方分米。

  (1)师出示一块1立方分米的体积模型并指出:这就是体积为1立方分米的正方体。

  (2)分组观察探究然后汇报:你知道了什么?

  引导学生:

  看一看:1立方分米的体积大一些,是一个正方体。

  量一量:1立方分米的正方体的棱长是1分米。说一说:棱长1分米的正方体,体积是1立方分米。(板书)

  想一想:体积是 1立方分米的物体比 1立方厘米的物体大。引导学生说出体积大约是1立方分米的物体。再引导学生做出:用手势表示1立方分米。

  议一议:计量体积使用立方分米比较恰当的物体。(粉笔盒、药盒、礼品盒等。)

  3、认识1立方米

  学生分组观察探究

  引导学生:说一说:根据以上两个体积单位的推测,什么样的物体的体积是1立方米?(板书:棱长1米的正方体,体积是1立方米)教师用三棱架在墙角演示1立方米,注意观察形状大小。教师用棱长1米的架子演示1立方米的大小,然后让学生估一估,用多少个1立方分米的正方体拼起来有1立方米、

  想一想:列举物体体积大约是1立方米的物体,如:两个课桌合在一起;电视机箱子……。

  启发学生借助四个同学围成的空间来表示1立方米。让学生看一看1立方米的体积有多大、教师:1立方米的空间大约可以容纳8位小学生、教师请8位学生钻进架子里,半蹲着,充满棱架、让全班同学体会1立方米的实际大小、(装电视机的纸箱、电脑台,洗衣机等等。)

  议一议:计量体积使用立方米恰当的'物体。4、互相议论:这三个体积单位的共同点是什么?不同点是什么?

  引导总结:体积单位分别是几个规定了棱长大小的正方体。1立方厘米就是棱长1厘米的正方体……

  4、巩固体积单位的认识、

  以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?

  (1)判断:(投影出示,113页做一做1)

  (2)操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。

  教科书第113页“做一做”的第1题,让学生充分说一说它们有什么不同、引导学生讨论归纳三者的不同点,使学生知道:长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。

  三、课堂练习,形成技能。

  1、用多大的体积单位表示下面物体的体积比较适当?

  (1)、一块橡皮的体积约是8 ( )(2)、一台录音机的体积约是 20 ( )。

  (3)、五年级语文课本的体积约是297( )。

  (4)、一个蓄水池的体积是4.2 ( )。

  2、操作练习。摆一摆、想一想、(可以小组合作完成)

  用12个棱长1厘米的正方体木块摆成不同形状的长方体。有多少种不同的摆法?它们的长、宽、高各是多少?体积各是多少?把你摆的情况记录下来,看你能发现什么?

  想一想:体积数是12立方厘米,跟各种摆法的长方体的长、宽、高的分米数有什么关系?2、

  3、书113页做一做第2题,通过阅读操作练习引导学生归纳:不论物体是什么形状,含有几个体积单位,它的体积就是多少。启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的、)教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的、)

  4、下面的图形都是由棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米。(填书:练习二十九第3题)你是怎样数出来的,怎样数简便?

  5、下图中哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?

  6、让学生闭上眼睛,想象1立方厘米的体积有多大,1立方分米的体积有多大,身边什么物体的体积接近1立方厘米或1立方分米、

  7、估量大约多少个1立方厘米的小方块拼起来有1立方分米、

  四、可随机自由提问。

  请同学们把这堂课学习的内容整理一下,你学到了什么?学会有关体积的知识有什么用呢?

  根据学生发言归纳、

  教学反思:

  本节课教学的主要任务是使学生理解“体积”的概念,知道计量体积要用体积单位、认识常用的体积单位:立方厘米、立方分米、立方米,建立关于1立方厘米、1立方分米、1立方米的实际大小的空间概念、教学之后认真反思觉得这个教学任务基本完成。

  本节课教学的关键是提供充分的直观素材,让学生通过实验、观察、触摸、拼摆、想象等多种活动,积累感知,建立表象,形成概念,教学设计从比较线段的长短,平面图形的大小、立体图形的大小引入,让学生在与“长度”、“面积”等概念的比较中认识“体积”,便于帮助学生在概念系统中理解新概念、为了更好的体现我的 “分层分组”的教学特色。我将新课分三个层次、首先是通过观察实验,从实验情境中领悟物体占有空间→物体所占空间有大有小→物体所占空间的大小叫做物体的体积、让学生选择自己喜欢的学习方式来学习。接着让学生观察和比较实物的大小,体验到要确切知道物体体积的大小,要用体积单位来计量、并引导学生对常用的体积单位通过看一看、量一量、说一说、想一想、议一议等方式进行学习。在此基础上,通过观察、比划、想象、比较;建立1立方厘米、1立方分米、1立方米的实际大小的空间观念、第三层次,通过小组合作拼一拼、摆一摆、说一说体积大小,深化对体积和体积单位的认识,并进一步理解:计量体积,就是看物体所含体积单位的个数、最后,对全课内容进行整理归纳,形成整体认知、

  巩固练习对教科书练习稍作引申,放在最后,要求学生记录下摆出的几种不同长方体的长、宽、高和它们的体积,并想一想“你发现了什么”,为下一课学习体积的计算做铺垫、

【《体积单位》教学设计】相关文章:

《体积和体积单位》教学设计06-09

《体积和体积单位》教学设计07-01

《体积单位》教学设计08-04

体积单位的换算教学设计12-29

《体积单位》教学设计合集(15篇)08-04

圆锥的体积教学设计05-25

《圆柱的体积》教学设计06-03

“圆柱的体积”教学设计06-05

“圆柱的体积”教学设计常用11-18