我要投稿 投诉建议

“倒数的认识”教学设计

时间:2024-07-08 10:02:17 教学设计 我要投稿

“倒数的认识”教学设计

  作为一名教职工,就不得不需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?以下是小编整理的“倒数的认识”教学设计,仅供参考,希望能够帮助到大家。

“倒数的认识”教学设计

“倒数的认识”教学设计1

  教学内容:

  数学第十一册19页----倒数的认识。

  教学目标:

  (1)知识目标:理解倒数的意义,掌握求倒数的方法。

  (2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

  教学重点:

  理解倒数的意义和怎样求一个数的倒数。

  教学难点:

  正确理解倒数的意义及0为何没有倒数。

  一、游戏导入

  教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

  二、探究意义

  1.找特点

  师:请同学们观察黑板上四组数都有什么特点。

  (生:分子、分母互相颠倒 )

  师:请同学们把每一组中的两个数相乘,看乘积是多少?

  (生:每一组中的两个数乘积都是1 )师及时板书

  师:谁还能很快说出乘积是1的两个数吗?

  (生回答)

  师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

  (生:两个数分子分母颠倒位置乘积是1)

  师:那么乘积是1 的两个数数学给它起个什么名呢?

  (生回答,师板书:乘积是1 的两个数叫互为倒数)

  师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

  重点讲解“互为”的意思,就是互相是的意思。例如:

  3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

  师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

  (指名叙述)

  师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的.关系,是相对两个数而言,不能孤立的说某一个数是倒数。

  三、探究求倒数的方法。

  师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

  出示:3/5 7/2 8/6 5/12 10/4

  (指名回答师板书)

  师:你们是怎么找出每个数的倒数的?

  (说自己的方法)

  师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

  出示:6 0.5 2 7/8 1

  (生回答,师板书)并说说你是怎样求的?

  师:是不是所有的数都有倒数呢?同桌讨论

  0为什么没有倒数?(0和任何数相乘都不得1)

  师:通过同学们的练习,谁来总结求一个数的倒数的方法?

  (生总结,师板书)

  四、小结并揭示课题

  同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

  五、巩固练习。

  1、填空

  1、乘积是()的两个数叫()倒数。

  2、因为7/15 x 15/7 =1 所以7/15和15/7( )

  3、 5的倒数是( )。 0.2的倒数是( )。

  4、()的倒数是它本身。()没有倒数。

  5、8×()=1 0.25×()= 1

  ()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

  2、当把小医生。

  1、得数是1的两个数叫互为倒数。()

  2a是一个整数,它的倒数一定是 1/a 。()

  3、因为2/3×3/2=1,所以2/3是倒数。()

  4、1的倒数是1,所以0的倒数是0。()

  5、真分数的倒数都大于1。()

  6、2.5和0.4 互为倒数。()

  7、任何真分数的倒数都是假分数。()

  8、任何假分数的倒数都是真分数。()

  3、面各数的倒数

  2.5 4 1/8 2 6/7 0.12

  4、列式计算

  1、7/6加上它的倒数的和乘2/3,积是多少?

  2、 1减去它的倒数后除以0.12,商是多少?

  3、已知A×3/2=B×3/5,(A、B都是不为0的数)

  求A、B的大小

  六、教学反思:

  倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

  “倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

  今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

“倒数的认识”教学设计2

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。

  教学目标:

  认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的`方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学过程:

  一、 创设活动情景,引入概念

  师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?

  生(众):能!

  师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。

  题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12

  生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)

  (通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)

  师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、 探索研究,深入理解

  师:同学们能不能说说你对倒数的意义的理解?

  提示:“互为”是什么意思?

  生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。

  师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。

  生:(争先恐后地)不对!

  师:那我该怎么说呢?

  生:3/4和4/3互为倒数。

  师:还有其他的说法吗?

  生:3/4是4/3的倒数,4/3是3/4的倒数。

  师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?

  生:能!

  师:好!我我来考考大家!

  三、 运用概念,探讨方法

  师:(投影,出示例2)

  3/5 6 7/2 5/3 1/6 1 2/7 0

  找一找,下面的哪两个数互为倒数?

  (小组探讨交流,并说说是怎样找的?汇报交流结果。)

  生:有两种方法来找一个数的倒数:

  1、看看两个分数的乘积是不是1;

  2、看两个分数的分子与分母是否分别颠倒了位置。

  师:(征求意见)大家同意他的说法吗?

  生:同意!

  师:大家认为哪一种方法更快呢?

  生:第二种。

  师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)

  四、 出示特例,深入理解

  师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?

  生:有!1和0。

  师:(提问)那1和0有没有倒数呢?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  五、 巩固练习

  (用多媒体投影出示下列各题,学生先做,再全班交流)

  1、 写出下列各数的倒数。

  4/11 16/9 35 7/8 4/15

  2、 下面说法对不对?为什么?

  (1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。

  (2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。

  (3)0的倒数还是0。

  (4)一个数的倒数一定比这个数校

  六、归纳小结,交流共享

  师:本节课你学到了什么,你有什么体会?

  生:我认识了什么叫倒数,还学会了怎样求倒数。

  七、布置作业:练习7第7题。

“倒数的认识”教学设计3

  【教学内容】

  教材P28页中的例1、“做一做”及练习六中的部分练习题。

  【教学目标】

  1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  【教学重点】

  理解倒数的意义,学会求倒数的方法。

  【教学难点】

  小数与整数求倒数的方法以及0、1的倒数。

  【教学方法】

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  【教具准备】

  课件

  【教学过程】

  一、激趣引入

  师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1、课件出示算式。

  先计算,再观察,看看有什么规律。

  3/8×8/37/15×15/75×1/51/12×12

  小组汇报交流

  2、出示倒数的意义:乘积是1的两个数互为倒数。

  3、你是怎样理解“互为倒数”的`呢?能举例吗?

  4、倒数的表达方式。

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  2、互为倒数的两个数有什么特点?

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  4、辨析:下面的说法对吗?为什么?

  A:2/3是倒数。()

  B:得数为1的两个数互为倒数。()

  C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()

  D、0的倒数还是0。()

  (三)运用概念。

  1、讨论求一个分数的倒数的方法。

  出示例1:写出其中3/5和7/2两个分数的倒数。

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。

  2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)

  3、1的倒数是几?0的倒数是几?

  (1)学生试做并讨论。

  (2)生汇报:

  (3)师生共同小结:1的倒数是1,0没有倒数。

  4、小结。

  求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。

  三、巩固练习

  1、写出下面各数的倒数。

  4/1116/97/84/1535

  2、判断。

  (1)真分数的倒数都是假分数。()

  (2)假分数的倒数都小于1。()

  (3)0的倒数是0,1的倒数是1。()

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

“倒数的认识”教学设计4

  一、教学内容:

  课本28页例1及相应的做一做、练习六的题目 。

  二、教学目标

  1、知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  2、能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  3、情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  三、教学重难点

  重点:认识倒数并掌握求倒数的方法。

  难点:小数与整数求倒数的方法。

  四、教学过程

  (一)、创设情景,生成问题

  交流我知道咱们班的同学个个都聪明伶俐、头脑反应快,现在老师想和你们比一比你们敢吗?

  师:我说一个字或词你们答出它的反义词,看谁答的又快又准。 生答:

  师:上、黑、左、强大、 兴高采烈、、、、、

  生:抢答。

  师:同学们答的又准又快看来是名不虚传,同学们刚才回答的这些字或词它们都是相互依存的是不是,例如没有上也就没有下,没有黑就没有白,实际在生活中经常遇到这样的情况,例如我们在五年级就学过这样的内容,那就是约数和倍数,今天我们在学习一种这样的内容好不好?――出示课题《倒数的认识》

  (二)、探索交流,解决问题。

  1、学习倒数的意义

  出示一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  让学生读一读:“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  让学生说说对倒数意义的理解。

  提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述。

  因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

  学习例2

  找一找哪两个数互为倒数?

  汇报找的结果,并说说怎样找的?

  1、看两个分数的乘积是不是1;

  2、看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  (1)找分数的倒数:交换分子与分母的位置。

  (2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  看一看,例2中的哪些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、关于1的倒数。

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  也可以这样推导:,1的倒数是1。

  2、关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  也可以这样推导:分母不能为0,所以0没有倒数。

  (三)、巩固应用,内化提高

  1、完成“做一做”。先独立做,再全班交流。

  2、练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、同桌进行互说倒数活动(练习六第2题)。

  (四)、回顾整理,反思提升。

  师:今天我们学习了倒数的有关知识,请同学们回忆一个,你是怎样学习的

  生:提问――自学讨论――汇报――练习

  师:你能用“我学会了……”来描述你今天学到的知识吗?

  生:我学会了……

  (五)、板书设计

  《倒数的认识》教后反思

  “倒数的认识”是在学生掌握了整数乘法等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。在引入部分,我利用朋友的相互关系及中国文字形象的使学生对倒数有了直观的认识,为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的'位置进行了调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的发现,我引导他们很快就总结出了倒数的概念――乘积是1的两个数叫做互为倒数。

  在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数时它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。

“倒数的认识”教学设计5

  教材分析:

  教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:知道倒数的意义和会求一个数的倒数

  教学难点:1、0的倒数的求法。

  教具准备:课件

  教学过程:

  一、课前谈话:

  师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

  生:好!

  师:那你想怎样表述我们的关系?

  生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

  二、揭示倒数的意义

  师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

  师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

  生:(齐)能!

  师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的'时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

  准备好了吗?开始??

  师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

  (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  出示例7

  师:那请你们来帮帮忙,找出乘积是1的两个数。

  (学生个别回答)

  师:你们找的这些与之前写的所有算式都有怎样的共同点?

  生:乘积都是1。

  师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

  师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

  师:3/8和8/3互为倒数!我们还可以怎么说呢。

  生:3/8的倒数是8/3;8/3的倒数是3/8。

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

  师:2/5和5/2的积是1,我们就说??(生齐说)

  师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  (小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  探索求一个倒数的方法

  师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

  生1:互为倒数的两个数分子和分母调换了位置。

  师:同意吗?

  生:同意。

  师:根据这一特点你能写出一个数的倒数吗?

  生:能

  师:试一试!

  师在黑板上出示3/5 7/2 ,写出它们的倒数。

  师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

  生:把5看成是分母是1的分数,再把分子分母调换位置。

  求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

  三、 分数倒数。 倒数。 假分数

  师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

  0的倒数呢?

  师:为什么?

  生1:因为0和任何数相乘都得0,不可能得1。

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1 的倒数是1,0没有倒数。

  (生齐读求一个数倒数的方法。 )

  四、巩固练习

  1、打开书,阅读课本P34,把你认为重要的划起来。

  2、完成练一练。

  (1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

  (2)发现一学生书写有误,与该生交流。

  (3)用展台展示该生的错误。

  师:这样写可以吗?(4/11=11/4)

  生:不可以!

  师:为什么?

  生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

  (4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  3、小游戏:同桌互相出一题,对方说出答案。

  4、先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是( ) (2)9/7的倒数是( )

  2/5的倒数是( )10/3的倒数是( )

  4/7的倒数是( ) 6/5的倒数是( )

  (3)1/3的倒数是( ) (4)3的倒数是( )

  1/10的倒数是( )9的倒数是( )

  1/13的倒数是( )14的倒数是( )

  由学生说出各数的倒数。然后

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

  4、填空:

  7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

  五、课堂小结

  1、小结:今天我们学习了什么???

  2、学了倒数有什么用呢?

  大家课后可去思考一下。

  板书设计

  倒数的认识

  乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

  0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

  (0.1=1/10) (5=5/1) (1又1/8=9/8)

  求小数的倒数的方法: 求带分数的倒数的方法:带分数

  分数假分数 倒数。 倒数。

“倒数的认识”教学设计6

  教学目标:

  1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

  2、通过互助活动,培养学生与人合作、与人交流的习惯。

  3、通过自行设计方案,培养学生自主探索和创新的意识。

  教学重点:

  理解倒数的含义,掌握求倒数的方法。

  教学难点:

  掌握求倒数的.方法。

  教学过程:

  一、导入

  1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

  2、按照上面的规律填数。

  3、揭示课题。今天,我们就来研究这样的数——倒数。

  二、教学实施

  1、师:关于倒数,你想知道什么?

  2、学习倒数的含义。

  (1)学生观察教材第28页主题图。

  (2)学生根据所举的例子进行思考,还可以与老师共同探讨。

  (3)学生反馈,老师板书。

  学生可能发现:

  每组中的两个数相乘的积是1。

  每组中两个数的分子和分母的位置互相颠倒。

  每组中两个数有相互依存的关系。

  (4)举例验证。

  (5)学生辩论:看谁说得对。

  (6)归纳:乘积是1的两个数会为倒数。

  3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

  4、求倒数的方法。

  (1)出示例1、

  (2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

  5、反馈练习。

  (1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

  (2)完成教材第29页练习六的第1—5题。

  三、课堂作业设计

  1、找一找下列各数中哪两个数互为倒数。

  2、填空。

  (1)三分之四的倒数是(),()的倒数是六分之七。

  (2)10的倒数是(),()的倒数是1。

  (3)二分之一的倒数是(),()没有倒数。

“倒数的认识”教学设计7

  教学重点:

  认识倒数并掌握求倒数的方法

  教学难点:

  小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:那么我们就说xx是xx的倒数,反过来(引导学生说)

  xx是xx的倒数,也就是说和互为倒数。

  xx和xxx存在怎样的倒数关系呢?2和呢?

  2、深化理解

  提问:

  ①什么是互为倒数?怎样理解这句话?(举例说明)

  ②0有倒数吗?为什么?1有倒数吗?什么?

  3、求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的.倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?

“倒数的认识”教学设计8

  教学内容:

  新人教版六年级数学上册第28页的例1。

  教学目标:

  1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

  2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

  3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

  教学重点:

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

  教学准备:

  多媒体课件。

  教学过程:

  一、猜字游戏导入,揭示课题。

  上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

  如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

  师:谁还能说出这样的数?(课件出示)

  象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

  二、出示学习目标:

  1、理解倒数的意义。

  2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

  三、自主探究新知

  (一)探究讨论,理解倒数的意义。

  1、(课件出示教材第24页例1的四个算式。)

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的.乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

  生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

  3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

  2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1、讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7

  所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

  师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

  3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  四、堂堂清作业

  (一)填一填。(出示课件)

  1、乘积是()的()个数()倒数。

  2、a和b互为倒数,那a的倒数是(),b的倒数是()。

  3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

  4、一个真分数的倒数一定是()。

  (二)判断题。(演示课件)

  1、5/3是倒数。()

  2、因为3/4×4/3=,所以4/3是倒数。()

  3、真分数的倒数大于1,假分数的倒数小于1。()

  4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

  (三)说一说。(课本第29页的第3题)

  五、课堂小结:

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

  2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

  求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

“倒数的认识”教学设计9

  教学内容:北师大版小学五年级数学下册第31~32页

  教学目标:

  1、能清楚地知道倒数的概念,能求一个数的倒数。

  2、培养学生动手动脑能力,以及判断、推理能力。

  3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。

  教学重点:能求一个数的倒数。

  教学难点:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。

  教学准备:多媒体课件

  教学过程

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  二、新知探索:

  1.研究倒数的意义

  。乘积等于1的两个数叫做互为倒数。

  。倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2.学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

  (b.以“假分数”为例;8/5的`倒数是5/8……假分数的倒数是真分数。)

  (c.以“带分数”为例;带分数的倒数是真分数。)

  (d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e.以“整数”为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3.讨论“0”、“1”的情况:

  1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4.总结方法:

  (除了0以外)你认为怎样可以很快求出一个数的倒数?

  三、反馈巩固:

  多媒体出示:

  1.写出下面各数的倒数:

  3/4、9/5、6、1、0、5、1.5这组数中,你最喜欢求哪个数的倒数?最不喜欢求哪个数的倒数?为什么?

  2.判断:

  (1)互为倒数的两个数的乘积一定等于1。()

  (2)2和它的倒数的和是?()

  (3)假分数的倒数是真分数。()

  (4)小数的倒数大于1。()

  (5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()

  (6)a的倒数是?()

  (让学生用手势判断,进行辨析,训练说理能力。)

  3.游戏:找朋友

  一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。

  四、全课总结,自我评价。

  提问:通过这节课,你学到哪些知识?

“倒数的认识”教学设计10

  一, 教学内容:国标版小学六年级数学上册第50页例7,练一练及第51页练习十第1-6题

  二, 教学目标 :

  知识目标:使学生经过探索理解倒数的意义,掌握求倒数的方法.

  能力目标:能熟练地写出一个数的倒数.

  情感目标:结合教学实际培养学生的抽象概括能力.

  三, 教学重点:理解倒数的意义,掌握求倒数的方法.

  四, 教学难点 :探索和理解倒数的意义

  五, 教学过程 :

  (一), 谈话

  1.我们知道语文中有反义词,谁能举几个这样的例子呢

  (学生举例)

  2.导入 那么在数学上也有类似的这样的现象,今天我们就一起来探索一下这方面的知识.

  (二),学习新知

  1.学习倒数的意义

  出示几组数据

  3/8和8/3 5/4和4/5 2/3和3/2 10/7和7/10

  你发现这几组数据有什么共同点吗

  可能1:第一个 分数的 分子就是第二个分数的分母,第一个分数的分母就是第二个分数的 分子

  可能2:两个分数的分子,分母相互调换了位置.

  可能3:两个分数的乘积是1.

  提问:谁能够根据刚才的回答给这几组数据起个名字呢 (注意可能1,倒过来的数字)(倒数)出示课题:倒数的认识

  提问:那么怎样的两个数才互为倒数呢 我们一起来看看书上是咱们说的(指导看书).

  思考:(1)什么是倒数 满足什么条件的两个数互为倒数

  (2)你能找出互为倒数的两个数吗.请举例

  *注意帮助学生理解"互为"的意义,以及叙述时语言要规范,如 2/3和3/2互为倒数.

  2教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5

  小组讨论 指名板演

  提问:1.你是怎么找出2/3的倒数的

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置.2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 .

  2.你是怎么找出7/4的倒数的

  ……

  提问: 我们怎样才能很快地找到一个数的倒数 为什么

  (分数的分子和分母的位置互换)

  抢答:5/9 6/7 8/5 的倒数各是多少

  3质疑1:1 的是谁 0的倒数呢

  生:1的倒数是1

  师:能说明一下理由吗

  生1:因为1与1的乘积还是1.

  生2:因为1可以化成1/1,1/1分子与分母调换位置后还是1/1,即1,所以1的倒数是1.(板书:1的.倒数是1)

  师:0的倒数呢 (引导学生质疑)

  生1:0的倒数是0.因为1的倒数是1,所以0的倒数是0.

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数.

  生3:0的倒数是没有的因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数.

  生4:0可以写成0/1,0/1的倒数是1/0.

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的 (板书:0没有倒数)

  4质疑2:5的倒数是几

  5完善求一个数的倒数的方法

  (三), 巩固练习

  (1)练一练

  写出下面各数的倒数

  7/12 1/3 9/4 8 13/5

  (2)判断*

  1.得数是1的两个数互为 倒数.()

  2.互为倒数的两个数乘积一定是1.()

  3. 1的倒数是1,所以0的倒数是0 .()

  4.分数的倒数都大于1.()

  (3)完成练习十第1-3题

  1.完成在书上

  2.举几个例子,说说你是怎么做的

  3.集体核对

  (4)完成练习十第4题

  1 分成4组,分别完成第1.2.3.4组

  2.同桌相互讨论,你发现了什么现象 (引导学生观察)

  3.归纳:

  真分数的倒数都是大于1的假分数

  大于1的假分数的倒数都是真分数

  一个分数的分数单位的倒数都是整数

  整数(0除外)的倒数都是几分之一

  (5) 完成练习十第6题*

  1.理解题意

  2.学生独立完成解题,师巡视.

  3.质疑:解题思路都一样吗 两个2/5有什么区别

  四,总结:今天我们学习了什么知识 你现在会求一个数的倒数了吗

  六 板书设计

  倒数的认识

  乘积是1的两个数互为倒数

  1的倒数是1 0没有倒数

“倒数的认识”教学设计11

  教学目标:

  1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

  2、培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念。

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

  让学生读一读:倒数。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、 探究讨论,深入理解。

  让学生说说对到数意义的理解。

  提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的`句子错在哪里?应该怎样叙述?

  因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

  三、运用概念,探讨方法。

  出示例2,找一找那两个数互为倒数?

  汇报找的结果,并说一说怎样找到的?

  1,看两个分数的乘积是不是1;

  2,看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  分子、分母交换位置

  例:3/55∕3 3∕5的倒数是5∕3

  (2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

  分子、分母交换位置

  例:6=1∕6 6的倒数是1∕6.

  四、出示特例,深入理解

  看一看。例2中的那些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、关于1的倒数。

  因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置

  也可以这样推导:1= 1∕1=1,1的倒数是1.

  2、关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  交换分子、分母的位置

  也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

  五、巩固练习

  1、完成做一做,先独立做,再全班交流。

  2、练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找到一个数的倒数?

“倒数的认识”教学设计12

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的`倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

“倒数的认识”教学设计13

  教学目标:

  1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  2、 培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  让学生读一读:“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、探究讨论,深入理解

  让学生说说对倒数意义的理解。

  提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述。

  因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

  三、运用概念,探讨方法

  出示例2,找一找哪两个数互为倒数?

  汇报找的结果,并说说怎样找的?

  1、 看两个分数的乘积是不是1;

  2、 看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  (1)找分数的倒数:交换分子与分母的位置。

  例:

  (2)找整数的倒数:先把整数看成分母是1的`分数,再交换分子和分母的位置。

  例:

  四、出示特例,深入理解

  看一看,例2中的哪些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  也可以这样推导:

  1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  也可以这样推导:

  分母不能为0,所以0没有倒数。

  五、巩固练习

  1、 完成“做一做”。先独立做,再全班交流。

  2、 练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、 同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找出一个数的倒数?

“倒数的认识”教学设计14

  教学内容:教科书第24页例1、例2及“做一做”。

  教学目标:

  1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  2.培养学生观察、归纳、推理和概括的能力。

  教学过程

一、口算练习,唤醒对1的探究热情

  A①×=②×=③×32=④×=

  ⑤×=⑥62×=⑦×=⑧×=

  ⑨×=⑩×=

  B①×1=②×1=③×1=④×1=

  ⑤×1=⑥1×=⑦1×=⑧1×=

  ⑨1×=⑩1×=

  C①÷1=②÷1=③÷1=④÷1=

  ⑤÷1=⑥÷1=⑦÷1⑧÷1=

  ⑨÷1=⑩÷1=

  (课前,将三组口算练习题分别发给同桌两人,其中把A发给坐在右边的学生,把B、C发给坐在左边的学生))

  师:请同学们拿出课前发的口算练习卡,现在我们来进行一个口算比赛,做完后请起立,两分钟时间,现在计时开始。

  之后让学生思考为什么做两组的比做一组的还快呀?学生交流后,再屏幕出示口算题让学生找找原因。

  师:看来秘诀就在1这个数上。1在运算中有一些特点,任何数乘1还得原数,如果除以1,也是这样。所以这个1,在数学运算中有自己独特的地方。板书:1想一想,谁除以谁会等于1呢?能用最简洁的语言概括一下吗?

  二、观察比较,抽象概念

  提问:谁乘谁等于1呢?板书:×()=1

  在练习本上写几组乘积是1的算式,时间1分钟,看看谁写得多。

  交流:把学生的算式分类排列。(整数、分数、小数)

  小结:3个臭皮匠赛过诸葛亮,集中大家的智慧,让我们把问题考虑的更全面。

  观察:这些等于1的乘法算式,因数有什么特点?

  预设:

  1、在有分数的算式里,分母和分子都颠倒了。(他用了一个词颠倒,很好的概括了这些因数的特点。这样的两个分数相乘都等于1吗?能不能再举出一些例子来?)真的很有意思,分子分母颠倒过来的两个数相乘等于1.在数学上,知道这样的两个数叫什么吗?(板书:倒数)

  2、很形象,分子分母交换了位置,通俗的讲就是倒过来了。那现在谁能简练的概括一下,什么是倒数?(板书:乘积是1的两个数互为倒数。)

  理解:

  在倒数的意义中,你觉得哪些词比较重要?为什么?

  预设:

  ①乘积是1,强调了只能是乘法计算的结果,加法、减法、除法的结果是1的两个数就不能说是互为倒数。

  ②两个数也很重要,它告诉我们不能是3个、4个或更多个数的乘积,只能是两个数的乘积是1.

  ③互为也很重要,互为是互相的'意思,表示两个数之间的一种关系,一个数不能叫倒数。

  练习:

  现在我们通过几道小练习来检测一下大家是否弄清了倒数的意义。

  1、×()=1

  2、判断:

  ①因为×=1,所以是倒数,也是倒数。()

  ②××=1,所以、、互为倒数。()

  ③×的乘积为1,所以与互为倒数。()

三、运用概念,探究方法

  提出问题:

  我们理解了什么是倒数,那给一个数,你会找它的倒数吗?同桌两个人互相出数,然后想一想,怎样求这些数的倒数?

  全班交流:

  ①分数(多找几对同桌先交流结果,再说一说找分数倒数的方法)

  ②整数(化成分母是1的分数,然后交换分子和分母的位置或用1除以这个数)有研究1的倒数的吗?0呢?

  ③小数(先化成分数,然后交换分子和分母的位置)

  质疑:

  有研究带分数的吗?带分数怎样找倒数呢?(举例验证,总结方法。)

  四、分层练习,形成能力

  1、写出下面各数的倒数。(课本24页做一做)

  预设:学生可能会出现=

  2、若m×=1,则m=()。

  3、任何真分数的倒数都是()。

  A真分数B假分数C不确定的数

  4、游戏:找朋友。

  ①请4个同学到台上,给每人戴上一顶帽子,上面有、、0.5、2各数,本人看不到自己头上的数,但可以看到其他三个人的。

  ②5个不同的数:、、1、、3,每个数的倒数都在其中。

  五、回顾全课,总结提升

  今天这节课,你有什么收获?

  师:同学们在动脑思考、合作交流中知道了什么是倒数,并知道了求一个数倒数的方法,还发现了两个特殊的数:1的倒数是1,0没有倒数。希望同学们在学习中能坚持善于观察、勤于动脑的好习惯,探索更多的数学知识。

“倒数的认识”教学设计15

  学习内容:人教版义务教育教科书数学六年级上册P28—29

  学习目标:

  (1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。

  (3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。

  学习重点:倒数的意义、特点和求倒数的方法。

  学习难点:1和0的倒数的求法。

  学习过程

  一、创设情境,激趣导学。

  1.出示算式,找特征。

  先计算,再观察,看看有什么规律。

  ×=1×=15×=1×12=1

  问:“你发现了什么?”

  2.引出倒数的定义。让学生看书。

  3.揭题:今天我们就来学习“倒数的意义”(板书课题)。

  二、独学质疑,合作探究。

  1.初步理解

  我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”

  这句话还可以怎么说?的倒数是,的倒数是。

  你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?

  2.判断,加深理解

  (1)判断正误,并说明理由。

  a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)

  b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)

  c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)

  小结:对于概念的学习,应该充分关注概念中的关键词语。

  (2)请任意写出三个数的倒数,要求,写完整:谁的.倒数是谁?

  三、点拨互动,应用提升。

  1.出示例2,找一找哪两个数互为倒数?

  2.学生汇报找的结果,并说说怎样找的?

  (1)看两个数的乘积是不是1。

  (2)看两个数的分子与分母是否交换了位置。

  3.根据寻找出的结果,探究倒数的特点。

  4.这两种方法,哪一种比较快?

  5.设问:1和0有没有倒数?如果有,是多少?

  (1)分组讨论。(2)学生汇报。

  四、检测诊断,总结评价。

  1.基本练习:完成教科书P28的做一做,然后集体订正。

  2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。

【“倒数的认识”教学设计】相关文章:

《倒数的认识》教学设计11-30

倒数的认识教学设计11-04

倒数的认识教学设计(优秀4篇)05-08

《倒数认识》说课08-04

“认识比”教学设计04-17

《倒数的认识》说课稿15篇02-15

倒数的认识说课稿(精选8篇)08-01

《倒数的认识》说课稿14篇11-24

《10的认识》教学设计05-26

认识负数教学设计06-04