《比的应用》教学设计15篇(热)
作为一名优秀的教育工作者,就不得不需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么问题来了,教学设计应该怎么写?下面是小编精心整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。
《比的应用》教学设计1
教学目标:
知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。
过程与方法:培养学生运用知识进行分析、推理等思维能力,情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答按比例分配应用题。教法:启发引导法,演示法学法:观察比较,合作交流。教学准备:多媒体课件。教学过程:
一、复习解决下面各题:化简
27千克:750克千米:800米求下面各比的比值
66学生独立完成,抽生板演,集体订正。
二、情景导入学生自由讨论
1、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?
2、我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的'比来进行分配,这种方法通常叫做按比例分配。
三、新授新知教学
(1)给出课件出示课本例2:某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?
(2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)
(3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)
水的体积:500×4=400(ml)
答:稀释液100ml,水400ml。
这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。
师:把我们学过的比转化成分率,怎样来做?
生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5、可以写成:浓缩液的体积:500×1/5=100(ml)
水的体积:500×4/5=400(ml)
答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。
四、巩固提高(幻灯片出示)
做一做第1、2题,学生独立完成,抽生板演,集体讲评。
五、全课总结
今天我们学到了什么?
六、家庭作业
教材第50页,练习十二1-3题。
教学反思:
本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。
《比的应用》教学设计2
教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。
教学目的:
1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。
2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。
教学重点:进一步掌握分数应用题的结构特征和解题规律。
教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。
教具准备:投影仪
教学过程:
一、梳理知识,使知识建成网状结构
1、口答:(打开投影仪)
(1)分数应用题的基本类型有几种?哪三种?
(2)解答这三种分数应用题的关键是什么?
(找准单位"1",弄清单位"1"的量、分率及分率对应量。)
(3)解答这三类分数应用题的基本关系式是什么?
2、(l)简单的分数应用题
①某班有男生40人,女生人数是男生1/4,女生有多少人?
②某班有女生10人,男生40人,女生人数是男生人数的几分之几?
③某班有女生10人,是男生人数的士,男生有多少人?
(2)稍复杂的分数应用题
①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?
②某班有男生40人,女生30人,男生人数比女生人数多几分之几?
③某班有女生30人,比男生人数少言,男生有多少人?
以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:
①求一个数的几分之几是多少?
单位"1"的'量×分率=分率对应量
②求一个数是另一个数的几分之几是多少?
分率对应量÷单位"1"的量=分率
③已知一个数的几分之几是多少,求这个数?
分率对应量÷分率=单位"1"的量
而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。
[评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的思维条理化,进一步理清了学生的解题思路。]
二、抓住结构特征,应用所学知识,提高能力。
(1)某用户三月份用电100度,四月份比三月份节约用电1/10,?
①100×1/10?
②100×(1—1/10)?
③100×(1—1/10+1)?
(2)某用户四月份比三月份节约用电100度,正好节约了1/10,
①100÷1/10?
②100÷1/10×(1—1/10)?
③100÷1/10×2—100?
(3)某用户四月份用电90度,比三月份节约用电1/10,?
①90÷(1—1/10)?
②90÷(1—1/10)×1/10______________?
③90÷(1—1/10)+90________________?
(学生口述,集体订正,比较异同)
2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)
__________运来的桔子比苹果少,___________?
(1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?
(2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?
(3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?
(4)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果比桔子多多少吨?
(5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?
(6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?
(7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?
(8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?
(9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?
(10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?
(11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?
(12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?
(13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?
(14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?
(15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?
(16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?
(17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?
(18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?
(19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?
(20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?
以上各题采用先让学生试做,然后老师归纳总结解题思路:
①先找出单位"1"的量
②谁和单位"1"的量相比
③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)
④确定算法(或列式)的依据是什么?
3、发展题(用幻灯逐题打出)
(1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?
(2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?
教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。
通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。
三、课堂小结,再次构成学生的认知结构。
师问:这节课你有哪些收获?
甲生答:这节课我们复习了分数应用题的基本类型。
乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。
丙生答:根据分数应用题的基本关系式确定算法。
丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。
《比的应用》教学设计3
教学内容:以“求和”为基本数量关系的两步计算应用题(书p51)
教学目标:使学生理解以“求和”为基本数量关系的两步计算应用题的结构,能用分析法或综合法分析数量关系,会口述解题步骤,能正确地列式解答。
教学步骤:
一、准备引新
1、秋天到了,让我们到果园里看看吧!果园里种满了什么树呀?如果老师告诉大家果园里有苹果树1420棵,要求苹果树和梨树一共有多少棵?(出示准备题1)你能解答吗?为什么?谁来补一个条件呢?
2、学生补充条件,并列式计算
梨树有1000棵 1420+1000=2420(棵)
3、这是一道几步计算的应用题?谁能补一个条件,使它成为两步计算的应用题?
学生口答补充:(1)梨树比苹果树少420棵
(2)梨树比苹果树多420棵
(3)苹果树比梨树少420棵
(4)苹果树比梨树多420棵
4、揭题:这样的两步计算应用题就是我们今天要学习的新课,现在我们先一起来研究第一种
二、探究新知:
1、研究例3
(1) 读题,找条件和问题,师画出线段图
(2) 根据小黑板上的思考提示,同桌互说这道题的解题思路
(3) 学生在本子上试做这道题,只用列出分步算式,快的同学可以列出综合算式。
(4) 指名板演算式,集体交流:指名说解题思路,1420表示什么?1000表示什么?
(5) 综合算式怎么写 ?谁还有不同的写法?1420-420表示什么?
2、如果补充的是“梨树比苹果树多420棵”,你怎样想?怎样算呢?根据思考提示自己思考后在本子上列式计算。
指名板演,并说说先求什么?再求什么?
3、小结:
我们今天学习的两步计算应用题跟以前学习的两步计算应用题在条件上有什么不同?只有两个条件的时候,其中一个条件需要用到几次,这两题中的哪个条件用了两次?第一次用它求什么?第二次用它求什么?但今天学习的两步计算应用题跟以前学习的两步计算应用题有一点还是相同的.,那就是关键都是先求出中间问题。
三、巩固深化
1、p52练一练1,请学生写在书上,集体校对
2、p52练一练2,看线段图列式计算
3、p52练一练3判断:谁的解法对?
小刚:240+40=280(人)
小明:240+40=280(人)
240+280=520(人)
小华:240-40=200(人)
240+200=440(人)
小青:240+240=480(人)
480+40=520(人)
小组讨论,选出正确的答案,错的答案要说说错在哪里?
4、p53练一练5
5、p53练一练4
四、总结
今天你学会了什么?
《比的应用》教学设计4
教学内容:课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的第1~4题。
教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。
教学重、难点:按比例分配的实际应用。
教学过程:
一、导入
1、情境导入
老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)
2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)
二、新授:
1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?
对照课本例2的解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。
师引导:
(1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)
(2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)
(3)你能求出两种作物各播种多少公顷吗?怎样求?
引导学生进行自己解题。
2、引导学生再次阅读例2的解题过程,再次质疑
3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?
4、教学例3。
(1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的.几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。
(5)学生试做“做一做”中的第2题。
先让学生说一说奶糖、水果糖、酥糖和占500千克什锦糖的几分之几?
三、巩固练习。
1.做一做第3题。
2.练习十三的第1、3题。
四、作业。练习十三第2、4题。
《比的应用》教学设计5
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习
1.说说正、反比例的意义。
2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从A地到B地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米
(二)新课
例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
(1)用以前方法解答。
(2)研究用比例的方法解答
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的'条件和问题
甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?
教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
整理和复习
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例
5/x=10/340/24=5/x
3、完成26页2、3题
综合练习
1、A×1/6=B×1/5A:B=():()
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()
实践与应用
1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
《比的应用》教学设计6
一、教学内容:
求一个数比另一个数多百分之几的应用题。
二、教学目的:
使学生掌握较复杂的求一个数是另一个数的百分之几的应用题的数量关系和解题规律,能正确地解答求一个数比另一个数多百分之几的应用题。
三、教学重点和难点:
掌握较复杂的求一个数是另一个数的百分之几的应用题的.数量关系和解题规律。
四、教学过程:
(一)、复习。
1.说出下面各题以谁作单位1的量。
(1)三好学生占全班同学的百分之几?
(2)台湾岛面积是全国面积的百分之几?
(3)已生产的水泥产量相当于计划产量的百分之几?
2.求一个数是另一个数的百分之几用什么方法?
(二)、新授。
1、出示题目:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
(1)读题。
(2)怎样理解今年图书册数增加了 这句话?
(3)画出线段图。
(4)写出数量关系式,并列式解答。
(5)、将题目中的 改成12%该怎样解答呢?
(6)、百分数应用题与分数应用题解题思路是一致的。
(7)、学生列式计算,集体订正。
A: 140012%=168(册) 168+1400=1568(册)
B: 1400(1+12%)=1400112%=1568(册)
2、练习。
练习二十二 ,第1题
(三)、小结。
今天我们学的是求一个数比另一个数多百分之几的应用题。
《比的应用》教学设计7
[教材简析]
比的应用是在学生学习了比与分数的关系和掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个重要内容。掌握了按比分配的解题方法,不仅能有效地解决现实生活中把一个数量按照一定的数量进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。
对于“按比分配”的问题,学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
[教学目标]
知识与技能
1、理解按一定比来分配一个数的意义。
2掌握按比例分配应用题的结构特点及解题方法,。
过程与方法
1、在自主探索中理解按比例分配的意义,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。
2、发展学生的分析能力、归纳概括能力,培养学生利用所学知识解决实际按比例分配问题的能力。
情感态度与价值观
1、在问题解决过程体验成功的喜悦,对数学产生良好的情感。
2、了解比在实际生产生活中的广泛应用,深刻体会数学与生活的紧密联系,激发学习数学的兴趣。
[教学重点]
掌握解答按比例分配应用题的步骤。
[教学难点]
掌握解题的关键。
[学习方法]
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
3、教学准备
学生准备小棒140根。
[教学时间]
一课时
[教学过程]
一、创设生活情景,谈话引入。
1、创设情景提出问题。
师:各位同学,现在是橘子丰收的季节,大家来看看农场的一些丰收的场面。这些果子老师想把它们送给你们两个班的,怎么分配这些果子呢?
2、学生交流分配方案。
(1)平均分配,把橘子平均分给两个班
(2)按人数分配,人多的班分多点,人少的班分少点。
二、探讨解决问题的方法。
1、抓住契机,适时提问。
(1)师:同学们的提议都很不错,其中认为按人数分配的更加细心和合理。
( 2)如果把这筐橘子按3:2来分给这两个班,你们又怎样分呢?
2、合作交流,动手操作。
(1)用小棒进行实际的操作。
(2)分组进行操作,组长记录分配的过程。
(3)让学生说一说自己的分法。
3、提升认识,板书课题。
师:同学们,这种按一定的比进行分配的问题是我们这节课探讨的问题—比的应用(板书课题)。
4、实际应用,解决问题。
(1)师:如果这些橘子的个数刚好是140个,按刚才的比3:2进行分配,该怎么分?
(2)学生独立完成,小组交流方法。
(3)提问方法,学生板书。
方法一:3+2=5140÷5=28(个) 28×3=84(个) 28×2=56(个)
方法二:3+2=5140×3/5=84(个) 140×2/5=56(个)
小结:刚才同学们的`这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
三、实践运用,巩固练习。
师:刚才同学们的表现都不错,现在有许多生活中的一些运用到比的知识来解决的问题,希望同学们能运用自己喜欢的方法来一一解决。
1、课本75页试一试:小清要调制2200克巧克力奶,需要巧克力和奶各多少克?巧克力与奶的质量比是2:9。
2、笑笑帮妈妈洗碗,妈妈拿给笑笑一瓶浓缩液,要求笑笑按这瓶浓缩液上的比1:4加清水稀释成600毫升的稀释液洗碗,你能帮笑笑算出要用多少毫升的浓缩液和清水呢?
3、蛋糕师傅制作蛋糕时,分别使用鸡蛋、白糖和面粉三种原料配在一起,三种原料的比:18:9:8,这样一个7千克的面团需要多少鸡蛋,白糖和面粉呢?
(1)引导学生选用喜欢的方法做题。
(2)讨论解决问题的方法。
四、联系生活,介绍比的应用的广泛性。
1、举例
师:今天我们解决了这么多关于比的问题,其实比在生活中有着非常广泛的应用,比如说消毒药水中酒精和水分配,饮料中的各种配料的比……你能举个事例吗?
2、数学书第56页练一练第2题。
3、数学故事:
一个老地主临死时把他的11匹马分给三个儿子,老大继承二分之一,老二继承四分之一,老三继承六分之一,可是三个儿子不知道怎样分,你能帮助他吗?
孩子在学了按比例分配之后兴趣正在浓厚的时刻,在次给他增加难度,使他们的探究欲望再次得到升华。
五、回顾教学,总结方法。
1、引导学生总结比的应用的一些方法。
2、这节课你有什么收获?
六、作业。
我们班准备在班队会上进行一次制作水果沙拉的比赛。要求:选择几样水果,按照一定的比,设计制作500克一盘的水果沙拉。要求要简介设计的名称、思路,并计算出所需水果的数量。
板书设计
比的应用
方法一:3+2=5 方法二:3+2=5
140÷5=28(个)140×3/5=84(个)
28×3=84(个) 140×2/5=56(个)
28×2=56(个)
答:大班分到84个,小班分到56个。
《比的应用》教学反思
一、充分挖掘教材,旧知迁移新知。
“比的应用”一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,反思比的应用是平均分后又一种分配方式,它是学生在掌握分数乘除法应用题的基础上进行教学的。所以在课堂教学中,我把课本重点例题当成生活中的问题,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。因此教师创设了分桔子的情景。教师提出问题,那该怎么分比较合理?学生很快说出两种分法,这位后面的教学奠定了基础。
二、借助多媒体或教具,助学生理解新知识。
学生的学习过程是一个动态变化的过程,主题、客体、媒体处于不断地先通过互作用和转换生成之中,学生对新知识的探究常常发生难以预设和意料的变化。对此教师从一开始就应该是一个积极、热情的“旁观者”,时时充满着对学生的爱心关注,感受其所作所为,所思所想,审时度势地做出激励,调整,启迪,补充,提醒等及时引导,该出手时就出手,这样,就会使学生的学习高效而少费时。从这节课的教学过程来看,学生在教师引导下,通过动手操作,以小棒代替橘子分一分,使学生明白算理,从而明白按比例分配。由于学生自己动手操作,猜想、交流,在具体的情境中掌握了新知,调动了学习积极性,增强了学习的情趣性,学生不仅为自己的发现而喜悦,也感受到数学带来的无穷乐趣。
三、教师在小结升华时讲解。
学生在动手操作、讨论、汇报等具体的情景中明白了算理,学生已经对具体的教学内容掌握的比较好,教师只要在小结时加以强调,:刚才同学们的这两种算法都是可以的。第一位解法是先算出一份是多少,再求几份是多少。把比的问题转化成了整数乘除法的问题。第二种解法是把各部分数的比占总数的几分之几,直接求总数的几分之几是多少。把比的问题转化成分数乘法的问题。两种方法各有千秋,可以根据自己的情况进行选择。
《比的应用》教学设计8
杨荷花 巩营乡中心小学
通过参加多媒体环境下的教学设计与资源应用培训的学习,我认识到信息技术的综合运用不应只停留在课件的制作上,感受到作为一名合格的教师,应积极主动吸纳当今最新的技术,并致力于把它们应用于课堂内的教与学活动中。也使我懂得了许多新知识,拓宽了视野,真是受益匪浅。运用多媒体辅助教学,打破了传统的以教师为中心的教学模式,在数学教学中恰当地使用多媒体,对培养学生的观察、思维能力,提高学生的综合素质,调动学生的学习积极性,提高课堂教学效果,提高教师教学能力具有重要作用。
1.教师具备良好的信息素养是终生学习、不断完善自身的需要。
信息素养是终生学习者具有的特征。在信息社会,一名高素质的教师应具有现代化的教育思想、教学观念,掌握现代化的教学方法和教学手段,熟练运用信息工具(网络、电脑)对信息资源进行有效的收集、组织、运用;通过网络与学生家长或监护人进行交流,在潜移默化的教育环境中培养学生的信息意识。这些素质的养成就要求教师不断地学习,才能满足现代化教学的需要;信息素养成了终生学习的必备素质之一,如果教师没有良好的信息素养,就不能成为一名满足现代教学需要的高素质的教师。
2.教师具备良好的信息素养,是教育发展的需要
在迅猛发展的信息社会,信息日益成为社会各领域中最活跃、最具有决定意义的因素。在教育系统中,教育信息则成为最活跃的因素,成为连接教育系统各要素的一条主线;而教育系统的一项主要职能就是由教育者把教育信息传递给受教育者。因为从信息论的角度看,教学过程是一个教育者(主要是教师)对教育信息的整理、加工和传播的过程。教师是这一过程中主要的信源和传输者,在教育信息的准备和传递等方面起着举足轻重的作用。因此,教育系统本身要求教师具备一定的.信息素养。
3. 观念上的更新
本次信息技术培训虽然只有短短五天的时间,但是每一天的培训都使我在观念上有一个更新。计算机的使用在往常对我而言就是一个进行文本操作的工具而已,本来我平时也不太注意对计算机技能的学习,总是有了问题就打电话求助,从没有想过要自己去掌握这样的技术。
4.细节上的渗透
本次培训中,授课教师注重细节上的教学渗透,他们不仅教给我技巧,更在无形中用自己的言行来引导大家,在一些细节的讲解上十分细致,恰当地渗透一些旧知识,使不同程度的老师都能得到提高。
五天的培训虽然短暂,但感受却颇多。在以后的工作岗位上,我一定扎实工作,努力学习,把用所学到的教育技术知识更好地应用教研教改中,做一名对学生负责,对学校负责,对社会负责的优秀教师。
《比的应用》教学设计9
教学内容 第43页例2
教学过程:
一、创设情境引入新课
1、出示两个篮球队的身高统计表,让学生根据统计表说一说谁最高,谁最矮。
2、如果两个篮球队进行身高比较,你认为哪个队队员身高高些?
王强是欢乐队中最高的队员,我们能不能根据这个信息就下结论欢乐队总体身高比开心队高吗?为什么?
3、讨论:怎样比较两支球队的整体身高情况。
二、引导学生探究新知(引导学生探索用平均数的方法比较)
1、合作学习
让学生自己进行平均数计算。
2、提问:142厘米表示什么?它是指欢乐队某个队员的身高吗?
3、144厘米表示什么?它是指开心队某个队员的身高吗?
4、你能告诉我们两个队的总体身高比较情况吗?
虽然欢乐队中的王强是两个队中最高的,但欢乐队的总体身高情况不如开心队,体会平均数是反映一组数据总体情况的一个很好的统计量。说一说我们在生活中哪些地方也需要运用“平均数”知识来解决问题?
师:看到你们这么勤奋好学,又学得那么有水平。老师今天也特别高兴,我相信你们以后会发现和自学到更多的数学知识。其实“平均数”的知识还有很多,在生活实际中应用也很广,你们回忆得起来吗?对我们上课的评分,也可以来比较,哪一周课堂得分高、哪一周课堂得分低?我们也可以进行比较
出示上两周课堂评分。
[板书: 100分 98]
[板书: 99分 99]
[板书: 98分 99]
[板书: 100分 100]
[板书: 96分 98]
[板书: 98分 100]
你们认为第一周课课堂评分肯定比几分多,比几分少?
师生共同演算: 平均分是多少?
全课小结。
教学目标
1、 使学生掌握平均数的意义和求平均数的方法。
2、 懂得平均数在统计学上的`意义和作用。
3、 培养应用所学知识合理、灵活解决简单的实际问题。
教学重点
使学生掌握平均数的意义和求平均数的方法。
教学难点
培养应用所学知识合理、灵活解决简单的实际问题。
《比的应用》教学设计10
教学目的
1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
2.通过复习,培养学生的分析能力以及综合能力.
3.通过复习,培养学生认真、仔细的学习习惯.
教学重点
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.
教学难点
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.
教学过程
一、复习准备.
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)
二、复习探讨.
(一)教学例4.
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……
3.教师质疑.
(1)5问和6问为什么解答方法不同?(单位1不同)
(2)3问和4问的问题有什么不同?(单位1不同)
(二)例题变式.
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多 ,蜡笔画有多少幅?
2.学校举办的美术展览中,有80幅蜡笔画,蜡笔画比水彩画多 ,水彩画和蜡笔画一共有多少幅?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:看来我们做分数应用题时,需要认真审题并且在找准单位1的同时注意找准对应关系.
(三)深化.
如果题目中的分数发生了变化,我们还会解答吗?
1.仓库里有15吨钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下多少吨钢材?
2.仓库里有一些钢材,第一次用去总数的20%,第二次用去总数的 ,还剩下15吨,仓库里有多少吨钢材?
(1)学生独立解答.
(2)学生讨论两道题的区别.
教师总结:虽然分数应用题与百分数应用题在表现形式上不同,但是数量关系相同.同样需要注意认真审题并且在找准单位1的.同时注意找准对应关系.
三、巩固反馈.
1.分析下面每个题的含义,然后列出文字表达式.
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年的电视机价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(2)油菜子的出油率是42%,一个榨油厂榨出菜子油2100千克,用油菜子多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.
男生比女生多20%,女生就比男生少20%. ( )
4.一辆汽车从甲地开往乙地,第一小时行了全程的 ,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲、乙两地间的公路长多少千米?
四、课堂总结.
通过今天这堂课,你有什么收获吗?
五、课后作业.
某体操队有60名男队员,
(1)女队员比男队员多 ,女队员有多少名?
(2)男队员比女队员多 ,体操队员共有多少名?
(3)女队员比男队员少 ,女队员有多少名?
(4)男队员比女队员少 ,体操队员共有多少名?
六、板书设计
《比的应用》教学设计11
小学比和比例应用题的教学设计
教学要求:
1。使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2。使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:
一、揭示课题
1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系
1、提问:比与除法、分数有什么关系?
2、出示:甲数与乙数的比是1 :4。提问:根据甲数与乙数的比是1 :4,你能用分数、倍数关系表示甲数与乙数的关系吗?
3、做练习二十二第4题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题
l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1 :15可以怎样理解?提问:按照1 :15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1 :15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
3、做“练—练”第2题。
学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。
4、做练习二十二第5题。
让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?
5、讨论练习二十二第6题。
请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的.人数对应的份数各是怎样的?
6、做练习二十二第7题。
让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。
四、课堂小结
提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。
五、布置作业
课堂作业:练习二十二第6、8题。
家庭作业:“练一练”第3题。
《比的应用》教学设计12
教学目的
1.通过知识迁移使学生掌握求一个数是另一个数的百分之几应用题的结构特征及解题规律。
2.正确列式,掌握计算方法,准确计算。
教学重点
明确单位“1”,会列关系式。
教学难点
能够根据题中条件找出和关系式中相对应的数量。
教学过程
(一)复习准备
1.什么叫百分数?
2.把下列各数化成百分数。(保留一位小数)
0.75= 1.25= 0.786= 1.763≈ 0.9855≈
3.列式计算,说分析思路。
六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?
说思路:关键句是“占六年级学生人数的几分之几”,也就是120人占六年级学生人数的几分之几。和六年级人数相比,六年级人数做单位“1”,关系式为
已达标人数÷六年级人数
小结:这是求一个数是另一个数的几分之几的应用题。因为所求的问题是表示两个数量之间的倍数关系,所以用除法计算。关键是找单位“1”,用单位“1”做除数。
(二)讲授新课
改变准备题为例题,把“几”改成“百”。
例1六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?
1.读题,说出例题与准备题有什么不同?百分数表示什么?(表示两个量之间的倍数关系。)这道题与准备题的解题思路一样吗?
2.说解题思路。(小组互说,集体订正。)
这道题的关键句是“占六年级学生人数的百分之几”,把问题补充完整,也就是已达到《国家体育锻炼标准》的120人占六年级学生人数的百分之几。和六年级人数比,六年级人数是单位“1”,做标准量。达到国家体育锻炼标准的120人是和六年级学生人数相比的量。
3.列关系式:
已达到国家体育锻炼标准的人数÷六年级总人数
4.列式:
(板书)120÷160=0.75=75%
答:占六年级学生人数的75%。
请同学们看计算格式:通常先求出商,用小数表示,然后,再转化成百分数。
问:结果表示什么?为什么没单位名称?
(体育达标的人数与六年级学生人数是倍数关系,所以没有单位名称。)
5.求一个数是另一个数的几分之几与求一个数是另一个数的百分之几的应用题有什么相同点和不同点?
(相同点:应用题的结构特征、数量关系、解题方法都用除法计算;不同点是最后结果,一个用分数表示两数间的倍数,另一个是用百分数表示两数间的倍数关系。)
6.解这类题的关键是什么?
(明确单位“1”的量;找准与单位“1”相比的量,用与单位“1”相比的量除以单位“1”。)
7.过渡到例2。
百分数还可以叫做什么?(百分率,百分比。)
你在日常生活中,听到过哪些率?(发芽率,出勤率,合格率……)
求这些率有什么作用?表示什么意思呢?
师:实行科学种田,为了保证基本苗数量,又避免浪费种子,就要先进行发芽率的试验。求发芽率就是求发芽的种子数占试验种子总数的百分之几。通常用下面的公式计算:
问:“率”表示什么?(两个数相除的商。)
师:发芽率是百分率的一种,公式本身应该用百分数的形式(%)表示,所以,要“×100%”。
例2某县种子推广站,用300粒玉米种子做发芽试验,结果发芽的种子有288粒。求发芽率。
1.默读题,说已未知条件。
2.什么叫发芽率?(同桌互说)
3.根据发芽率公式,自己列式。集体订正。
问:结果有单位名称吗?为什么?
4.根据发芽率的公式,你们能说出求下列百分率的公式吗?(边说边投影。)
想一想:你能告诉大家一个百分率公式吗?
5.练习:第137页“做一做”。强调先写公式,再列式计算。(集体订正。)
(三)巩固练习
(投影)
1.一班种树40棵,二班种树48棵,二班种的棵数占一班的百分之几?(集体订正)
48÷40=120%
为什么不是40÷48?(一班是单位“1”,一班种的棵数做除数,二班种的棵数是和一班相比的量,做被除数。)
2.读题,说单位“1”;列式,说结果。
①2是5的百分之几?
(5是单位“1”,2÷5=0.4=40%。)
②5是2的百分之几?
(2是单位“1”,5÷2=2.5=250%。)
③4千米相当于5千米的百分之几?
(5千米是单位“1”,4÷5=0.8=80%。)
④20分钟是1小时的百分之几?能直接列式吗?先怎么办?
3.以小组为单位说分析思路后,个人在本上列式,集体订正。
①某村前年造林15公顷,去年造林18公顷,是前年造林的'百分之几?
②某种录音机原价560元,现价是320元。现价是原价的百分之几?原价是现价的百分之几?
③某生产队割青草200吨,晒成干草后还有120吨。求青草的含水率?
关键要明确,青草含水重量,就是失去的水分,即:青草晒成干草后少的重量。
④某年级一班有男生22人,女生20人。女生占男生的百分之几?男生占女生的百分之几?男生占全班人数的百分之几?
分析第三问,全班人数是单位“1”,全班人数是男生和女生的总和,所以,除数就是男女生人数的和,列式为:22÷(22+20)。
问:第三问与前两问有什么区别?
⑤某区绿化环境,前年种花草200公顷,去年比前年多40公顷。前年种花种草是去年的百分之几?
小组讨论分析,谁是单位“1”,谁是和单位“1”相比的量?会列式吗?集体订正。
4.根据:“24,60”两个数编“求一个数是另一个数的百分之几”的题。
《比的应用》教学设计13
一、创设情境,导入新课
师:小明的妈妈记录了小明0~10的'身高,如下表
(师出示P110例2的统计表)
B学生小组评价优秀作品;
C全班交流优秀作品。
3.根据折线统计图进行合理推测:小明身高的发展趋势
1、准备未完成的统计图
2、培养学生在统计的过程中发现问题、解决问题及进行合理推测的能力。
三、巩固练习
1.完成书中P111的做一做;
2.完成书中P112练习十九第二小题的问题解答;
教师巡视指导
学生独立完成,师组织学生进行评析、交流。
四、作业
完成书中P113练习十九第3小题
学生回家完成
板书设计:折线统计图
1、描点2、连线3、标数量
《比的应用》教学设计14
第四课时
教学内容
应用题(教材第137页总复习第8~10题,教材第140页练习三十四第12一15题)。
教学要求
使学生进一步掌握应用题的一般解题步骤,正确地分析应用题中数量间的关系,可以根据具体的题目,既能按照一般的分析思路进行解答,又能根据题里已知条件间的'特殊数量关系,选用简便方法解答,从而提高学生分析和解决问题的能力。
教学步骤
一、基本数量关系的训练
平均每小时行的路程=()÷时间
两地距离○()=相遇时间
实际产量○()=计划产量
提前的天数=()○()
二、复习应用题一般的解题步骤
1.说一说解答应用题一般的解题步骤。
2.补上问题再解答:
(1)小龙有三盒彩色粉笔,共72支,又买了两盒,?
学生可能补的问题:
①现在小龙共有多少支彩色粉笔?
②又买了多少支彩色粉笔?
把问题补充完整后,让学生自己分析,列综合算式计算,教师指名口头分析数量关系并说出算式,教师板书。第①题有两种解法,教师要给予肯定。②题是①题的一部分。
(2)两地相距330千米。甲车每小时行32千米,乙车每小时行34千米。两车同时从两地相对开出,?
学生可能补的问题:
①开出后几小时两车相遇?
②相遇时两车各行多少千米?
③相遇时甲车比乙车少行多少千米?
④开出后2.5小时,两车相距多少千米?
⑤如果甲车先开出1小时后,乙车才开出,还要几小时相遇?
让学生自己分析,逐题解答,可引导画线段图理解。
3.改题。
把上题改成已知相遇时间求两地距离的问题。
学生编题,教师板书,然后让学生自己解答:口述数量关系,并列式,集体讲评。(略)
教师小结:解答应用题可根据四个解题步骤,认真审题,理解题意,对稍复杂的问题可以画线段图帮助理解,分析数量关系,列式计算、解答。做完题要认真检验答案,如有列式错误,必须订正。
三、练习
教材第140页练习三十四第12~15题。
作业辅导
1.吉阳乡原计划18天挖一条是3600米的水渠,实际每天比原计划多挖40米,实际提前几天挖完这条水渠?
2.建筑工地要运走一堆土,原计划每天运240车,30天可以运完。现在要提前15天运完,每天要运多少车?
3.某水利专业队,15人3天可以修水渠135米,照这样计算,增加5人再修6天一共可修水渠多少米?
4.某电视机厂四月份(30天)计划生产电视机1080台,实际头7天就生产了420台。照这样计算:(1)可提前几天完成任务?(2)全月可以超产多少台?
《比的应用》教学设计15
教学时间:
教学内容:练习二十六第3-7题
教学目标:
知识:使学生熟悉乘法一步应用题的结构,会解答求相同加数和的乘法的应用题。
能力:培养学生分析应用题的能力。
教学重难点:会解答求相同加数和的乘法的应用题。
突破方法:讲解法、练习法
教具:小黑板、投影机、
教学过程
1、师生对口令把口决说完整
二五()四五()四四()三四()
二三()五五()一五()三五()
2、说说第个式子所表示的意思和用哪句乘法口决
4×35×2
3×42×5
3、应用题
(1)小明做数学题,每行做5道,做了2行,一共做了多少道?
提问:这道题求什么?2个5的和是多少?怎样列式?
(2)小明做数学题,做了2行,每行做5道,一共做了多少道?
(3)比较上面两应用题。小结:
4、做练习二十六的第3-7题
四、板书设计
教后经验与失误分析:
第九节的乘法口决和乘法应用题的综合练习课
教学时间:
教学内容:练习二十六8-12
教学目标:
知识:巩固1-5乘法口决
能力:通过区分加法应用题和乘法应用题使学生进一步掌握乘法应用题的结构。
教学重难点:掌握乘法应用题的结构。
突破方法:讲解法、练习法
教具:小黑板、投影机、
教学过程
一、复习.乘法口.决
1、检查3名学生记乘法口决情况。
2、对口令
3、做练习二十六的.第8题
二、乘法应用题的练习出示练习二十六的第9题
提问:这道题的已知条件是什么?问题是什么?
指名读(2)题,并说出已知条件和问题再提问,这两道题有哪些相同的地方有哪些不同的地方。用学具摆出来。让学生在自己的书上列式。
小结:从这两道题可以看出,我们在做应用题时不能只看问题是求一共是多少就用乘法,或用加法,而应该认真分析题目,如果已知条件相同的加数和相同加数的个数才可以用乘法,如果已知的是不相同的加数和就只能用加法计算。
三、达标测评
做练习二十六10题、11题。
编题练习
四、板书设计
教后经验与失误分析:
【《比的应用》教学设计】相关文章:
比的应用教学设计06-19
《比的应用》教学设计06-09
比应用教学设计06-07
《比的应用》教学设计06-17
《比的应用》教学设计15篇【集合】06-17
《比的应用》讲课设计与深思09-18
六年级《比的应用》教学设计11-17
小学语文信息技术应用成果教学设计方案01-08
装帧设计教学设计04-19