《比的应用》教学设计15篇【集合】
作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写呢?下面是小编为大家收集的《比的应用》教学设计,仅供参考,欢迎大家阅读。
《比的应用》教学设计1
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在Rt△ABC中,∠C=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠A、∠B有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求AB可以解Rt△ABD和
Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。
⑶解题过程,学生练习。
⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。
分析:
⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。
⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。
解:设山高AB=x米
在Rt△ADB中,∠B=90°∠ADB=45°
∵BD=AB=x(米)
在Rt△ABC中,tgC=AB/BC
∴BC=AB/tgC=√3(米)
∵CD=BC-BD
∴√3x-x=20 解得 x=(10√3+10)米
答:山高AB是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。
练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。
练习3:在塔PQ的`正西方向A点测得顶端P的
仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2
五、作业布置,反馈信息
《几何》第三册P57第10题,P58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
《比的应用》教学设计2
数据库技术是计算机信息系统与应用系统的核心技术和重要基础,《数据库原理与应用》课程的教学目标就是使学生系统地掌握数据库系统的基本原理和基本技术,掌握数据库设计方法和步骤,具备设计数据库模式以及开发数据库应用系统的基本能力。课程设计作为该课程常规教学的延伸和深化,是承上启下的必要教学环节。下面,我和大家分享一下我所做的教学设计。
一、教学目标分析
中等职业技术学校计算机专业的《数据库原理与应用》课程的任务是:介绍数据库技术的基本概念,熟悉数据库管理软件xBASE系列的基本操作,掌握程序设计的基本方法,初步掌握交互式开发工具,通过课程实习掌握小型应用软件的开发过程。
因此,本课程的教学目标是:使学生掌握数据库技术和数据库管理软件的基础知识和基本技能,掌握程序设计方法,具有开发小型应用系统的能力。为实现这一教学目标,要进行相应的教学改革,主要是课程的教学由传统“理论教学+笔试”模式改为“基础(包括基本理论和基本技能)教学+课程设计”模式。课程设计的目标是:培养学生利用各种媒体(包括传统媒体和Internet技术等)获取、加工、处理信息的能力,能够完成小型软件的开发。
二、活动目的
通过课程设计教学活动,让学生在已掌握数据库原理的基础上,通过对社会或生活需要的调查、分析,做出规划、设计,培养学生搜集信息的能力,开发小型应用软件,从而使学生掌握数据库知识意义和信息技能,提高自学能力和知识的综合能力和信息素养。
三、活动内容
活动内容包括指导学生从生活出发,搜集相关资料,分析需求情况,确定开发项目;要针对开发的项目再采集数据,进行系统规划,确定系统的框架;画出流程图,并以此写出FoxPro程序及进行调试和修改;编写系统使用手册;指导学生进行演示和组织评价工作;在课程设计中指导学生自学。
四、教学设想
课程设计采取以学生学习活动为主体的教学活动,学生在教师的要求和指导下,自主地确定设计的课题,确定软件的内容和表现方式,通过各种媒体进行自学。因此,在课程设计教学中教师是教学过程的组织者、指导者、意义建构的帮助者、促进者。
五、教学对象
20xx级计算机应用专业全体学生。
六、教学时间
20xx年5月~6月。
七、教学过程
共分为五个阶段:
1.动员布置阶段
强调进行课程设计的意义,鼓励学生积极参与课程设计,激发学生的学习热情,培养良好学习环境。印发《〈数据库原理与应用〉课程设计说明》,详细地布置设计内容,完成工作,并推荐一些设计项目供学生参考,提高学生参与的积极性,动员更多的学生参与其中。
2.指导学生收集资料阶段
指导学生收集原始资料,初步确定课程设计项目,并上报指导教师,再由指导教师汇总,教师再根据情况进行个别或集中指导。
3.协助学生对资料进行分析、归纳阶段
对学生所收集到的资料进行分析,提出所要解决的问题,研究解决该问题的可行性。通过论证,确定课程设计项目。在这个阶段,教师要对学生所要解决的问题及解决问题的'方法的科学性、合理性、可行性进行分析归纳。
4.指导规划设计阶段
学生根据所选课题,进行系统规划设计。(范文网 )包括确定软件(课题)功能、系统结构(数据流程)、程序流程、编写代码、调试程序。这是课程设计的主体部分,这个阶段我们对学生的指导原则是严格要求、规范设计、耐心指导、发扬个性、鼓励创新。
5.总结评价阶段
总结采取三种方法:学生自己演示课题,教师组织其他学生进行评价;教师总结表彰;学生书面总结。这个阶段的主要目的是“表扬先进,激励后进”,让学生展示自己的成果,分享成功的喜悦,总结学习成绩,增强学习信心;相互了解,通过对比发现差距,确立奋斗目标。
八、指导学生学习
在课程设计的教学过程中,学生的“学”是教学的中心。学生主动地学习,并自觉地应用相关知识,同时利用反馈的信息总结解决实际问题的方法。在教学中,一方面,教师要着力为学生创造一个良好的学习环境,使学生可以在其中进行自由探索和自主学习,并及时地为学生在探索过程中提供相应的帮助。另一方面,教师指导学生如何利用各种工具去获得信息资源(如文字资料、书籍、Internet资源等),使学生的学习环境空间得到充分扩展。
九、课程设计结果统计
课程设计结果统计是完整教学活动的组成部分,主要包括:
1.课题分布
2.课程设计评价统计
如何科学地进行课程设计的评价,主要考虑下列因素:(1)学生的综合能力;(2)学生应用信息的能力;(3)学生对教学之外知识的汲取能力;(4)学生的创造能力。具体从软件作品(包括所有要求上交的内容)的外观、软件说明书的编写、软件界面和使用方法、软件的结构、编写程序的算法和创新精神等方面进行评价。
十、问题思考
如何理解课程设计的目的和如何给学生进行科学的评价,是课程设计教学的重要问题。
课程设计教学不仅要求学生掌握相关的数据库理论和软件工程学的有关知识,更重要的是学生能够对它们形成意义建构,这是基于建构主义教学的核心。也就是说学生的知识不是通过人为的“灌输”,而是学生在自主学习中得到的。学生通过解决具体问题、查阅书籍和文字资料以及利用Internet寻找信息资源培养和提高了自学能力和信息素养,从而提高了学生的素质。因此,对学生课程设计的评价不应过分强调设计的本身,而应围绕学生的自主学习能力、协作学习过程中作出的贡献、是否达到意义的建构要求三个方面去进行的。
总而言之,详细周密的教学设计有助于更好地打造高效课堂,使学生学到更多的知识;课程设计教学能够科学地培养学生自主学习的能力,提高学生的多方面素养。
(作者单位 广东省潮州市职业技术学校)
《比的应用》教学设计3
(1)教学设计
一.教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学过程:
(一)复习引入
1.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系:sinA=cosB= sinB=cosA= tanA= tanB=
(2)三边之间关系 (勾股定理)
例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
2.教师在学生思考后,继续引导"为什么两个已知元素中至少有一条边?"让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).
3.例题
例1:已知a、b、c为Rt△ABC的三边,且斜边c=30
a=15,解这个三角形.
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.
解 ∵sinA=a/c= 1/2
∴ ∠a=30° ∴ ∠B=60°
∴根据勾股定理求出b=
例 2:在Rt△ABC中, ∠B =30°,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书
完成之后引导学生小结"已知一边一角,如何解直角三角形?"
答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:例1中的b和例2中的`c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
(1)P74 练习(单班)
(2) P77习题1(双班)
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(三)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.教师点评.
四、布置作业
1 、P84习题1 、2.(单班)
2 、P78习题6(双班)
《比的应用》教学设计4
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的'?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《比的应用》教学设计5
一、教材分析、学情分析
(一)教材的地位和作用
《百分数的一般应用题》是在学生学过用分数解决问题和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。主要内容是求常见的百分率,也就是求一个数是另一个数的百分之几的实际问题,这种问题与求一个数是另一个数的几分之几的问题相同。所以求常见的百分率的思路和方法与分数解决问题大致相同。通过这部分教学,既加深了学生对百分数的认识,又加强了知识间的联系。
这部分教材在安排上有以下一些特点:
1、 从学生已有的知识和生活经验出发,帮助学生理解数学。
2、 设置数学活动生活情境,培养学生的解决问题意识和探究精神。
(二)学情分析
对学生来说,利用已有的知识和生活经验,依据数量关系列式解答并不困难,但要求学生找准谁和谁比,很重要。
二、教学目标与重难点
根据以上分析,我确定了本节课的教学目标如下:
1、使学生加深对百分数的认识,理解生活中的百分率的含义,掌握求百分率的方法。
2、依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识
3、让学生在具体的情况中感受百分数来源于生活实际,在应用中体验数学的价值。
重点:解答求一个数是另一个数的百分之几的应用题。
难点: 正确理解达标率、发芽率等这些百分率的意义
三、教学学法、教学设计
(一)学生学法
在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在,教师要指导学生观察计算方法,发现共同点,通过思考,提出问题,通过探究,解决问题。
(二)教学设计理念
本节课的教学设计具有以下几个特点:
1、依据知识的迁移规律,进行了必要的铺垫。根据新课“求一个数是另一个数的百分之几”的需要,复习了百分数的意义,以及分数、小数化成百分数的方法,重点突出了准备题,为讲授新课做了铺垫。
2、引导学生找出新旧知识的异同点,进一步强化了教学的重点。
3、精心设计习题,使知识引向深入
四:教学过程:
(一) 创设情境,激趣导入。
1爱迪生的名言:“我成功的秘诀就是:一份的`灵感加上九十九份汗水”
谈谈你对这句话的理解。(成功来自不易等等)
从这句名言你能提出什么数学问题?
2.例如:把“成功”看着100份,那么“灵感”就占了它的1份,“汗水”就占它的99份。
(1)“灵感”占“成功”的几分之几?
(2)“汗水”占“成功”的几分之几?
今天我们一起来学习百分率的求法。
(二) 范例讲析。
例1.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?
问题1是那两个量相比?
问题2哪个量是单位“1’?怎样计算?
120÷160=3/4
例2.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?
问题1对比两题,什么没有变?问题有何变化?
2,达标率:达标人数占学生总人数的百分之几。
问题3如何求达标率?
达标率=达标人数÷总人数×100%
注意:1求百分率必须乘100%。
2.结果写成百分数的形式。
3.便于比较,计算。
120÷160×100%=0.75×100%=75%
答:六年级的达标率是75%。
《比的应用》教学设计6
一、教材分析
《比例的应用》为全日制聋校数学第十五册第一单元的第三部分内容,这一部分的教学内容从构建上更注重学生技能的养成和知识的运用。把通过三个相关联的量求第四个量的运算,用方程的方法呈现为比例的形式,这样从视觉上更附和了聋生的认识特点,同时也把复杂的等量关系更清晰的更简单的体现在比例的内容里。让学生轻松的理解比例就是在等号两边表示两组相等的比。这样的'方法也是比例应用题的一大特点。同时更有助于学生从理论知识到技能操作的转变,使新课程理念融入于特教课堂。
二、教学方法
情趣导入法、总结法、问题导入法及指导法。
三、教学目标
1、知识目标:理解应用题中比例的意义,并根据比例的性质解决应用问题。
2、能力目标:
①通过对应用题中已知条件与未知条件的分析并确定数量关系,培养学生逻辑思维能力和分析解决问题的能力
②通过求解的过程,培养学生的运算能力。
3、情感目标:培养学生的数学兴趣,激发自主探索的求知欲。
4、缺陷补偿:通过对问题的分析,积累语言发展思维。重点:利用比例的意义确定等量关系。难点:数量间的运算关系。
四、教学流程:
1、兴趣入题
“同学们有没有想过毕业后未来的生活呢?现在我请大家为自己的将来设想一下,你准备做什么呢?”。
2、初探新知
出示根据学生的理想加工的题例。
董健昕同学经营一服装店,卖3件衣服可以盈利150元,按这样的收入计算,每月卖出80件可以盈利多少元?
让学生运用“三步”解题法,分析问题。
1看
已知条件包括:3件、盈利150元、80件求知条件:盈利多少元?
2找
从名数看包括四种数量:件数、盈利总额、件数、盈利总额。且四种数量是两两重复的。
确定数量关系:总额与件数间的关系是除法,进一步确定比例关系,总额:件数=总额:件数。
等号左边的总额为150元,件数为3件,等号的右边总额为?,件数为80件。
3解
解:设盈利?元。 150:3=?:80 3?=150×80?=150×80÷3?=4000答:可以盈利4000元。
巩固方法:
出示文本中的例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
让邻座的学生间进行比较分析,确定数量及数量间的关系并求解。
即时小结:
比例的形式就是:比=比,应用题中的比例即为:左边的数量关系等于右边数量关系。如何利用比例来解应用题就是看是否有两两相对的数量,并确定对应的数量间是否存在正、反比例关系。让学生从抽象到直观的掌握方法。
课业布置:
紧扣学生的理想出示题例二:职业课上,每天做8面国旗,要10天完成,如果每天做10面要几天完成呢?
板书设计:
比例的应用
1看:(已知:3件、盈利150元、80件)(未知:盈利?元?)2找:(总额:件数=总额:件数)3解
解:设盈利?元。 150:3=?:80 3?=150×80?=4000答:可以盈利4000元。
《比的应用》教学设计7
教学内容:课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:正确分析数量关系,找准单位1
教学难点:依题意正确画图教学过程:
一、复习。
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的',有40只黑羊。()?
二、新授。
1.出示例3。
小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
三.巩固练习。
完成练习四的第6、7题。
四、全课小结。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
五、布置作业。
完成练习四的第8~10题。
教学反馈:
《比的应用》教学设计8
一、复习引入
1.回忆列方程解决问题的一般步骤。
学生小组内交流。
2.在横线上写出含有字母的式子。
(1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。
(2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。
学生独立思考后,指名回答。
二、讲授新知
1. 导入。
教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)
2.探究新知。
(1)分析题旨、提出问题
教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?
学生认真读题,分析题意,全班交流。
教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?
学生独立思考,全班交流汇报。
(2)找等量关系。
教师:你能用一个等量关系式来表示它们之间的相等关系吗?
小组合作,全班交流。
多媒体出示各种等量关系式的情况:
①小雁塔的`高度×2-22=大雁塔的高度。
②小雁塔的高度×2=大雁塔的高度+22。
③小雁塔的高度×2-大雁塔的高度=22。
④(大雁塔的高度+22)÷2=小雁塔的高度。
教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。
教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?
指名学生回答。
(3)引导列出方程。
教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?
学生独立思考,全班交流。
教师:根据等量关系式,你们能列出方程吗?
学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。
解:设小雁塔高x米。
2x-22=64
(4)自主思考、解方程。
教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?
小组合作探究,全班交流。
通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。
教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。
组织交流解方程的整个过程,并完整板书。
解:设小雁塔高 x米。
2x-22=64
2x-22+22=64+22
2x=86
x=43
(5)引导检验、培养习惯。
教师:你打算怎样对这道题进行检验?
学生各自检验,指名汇报检验方法。
教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。
3.内化理解、触类旁通。
教师:根据等量关系还可以怎样列方程解决?
学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。
集体交流,然后说说怎样来解自己的方程。
4.对比归纳、掌握方法。
教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?
小组交流,明确:顺着题意来列方程比较简便。
三、巩固应用
(一)预习答疑
这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。
(二)教材习题
1.教材第10页“练一练”。
引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)
2. 教材第11页练习二第5题。
独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )
3. 教材第11页练习二第6题。
学生直接填空,全班交流。(3x+15 4x-80)
4.教材第11页练习二第7题。
学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)
5.教材第11页练习二。第8题。
学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)
(三)课堂作业
完成第三部分习题设计“课堂作业”第1、3题。
学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。
四、总结提升
1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?
2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?
五、布置作业
完成第三部分习题设计“课后作业”第5、6、7题。
设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。
设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。
设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。
设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。
设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。
设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。
《比的应用》教学设计9
教学内容:
苏教版国标本小学数学第十一册P62例5和练习十二T1—3。
教学目标:
1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
2、进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
3、培养学生解决实际问题的能力。
教学重点:
学会列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
教学难点:
体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
设计理念:
本课要使学生在探索解决问题方法的过程中,进一步培养独立思考、主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,增强学好数学的信心。
教学步骤
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?出示:小瓶的果汁是大瓶的。
提问:这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的'分数除法应用题
学生猜测大、小两瓶果汁之间的数量关系。
学生口答,教师根据学生的回答进行板书:大瓶里的果汁× =小瓶里的果汁。
二、教学新知
1、教学例5
2、教学“试一试”
1、出示例5
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
如果学生用除法计算,教师可引导讨论:为什么可以用除法计算?依据是什么?
引导学生讨论:用方程解答是怎么想的,依据是什么?
3、引导检验:=900是不是原方程的解呢,怎么检验?
(1)出示题目
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
一盒牛奶的升数× =喝了的升数
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
学生读题。
学生反馈解题方法。学生的方法可能有两种:
(1)用除法计算。
600÷
(2)用方程解答
解:设大瓶里有果汁x升。
× =600
学生在教材中完成解方程的过程,并指名板演。
学生反馈说明检验的方法。
学生读题,理解题意。
学生回答,根据学生的回答教师板书:
学生小结解题的方法和策略。
三、巩固练习
1、完成“练一练”。
鼓励学生用两种方法进行解答。
2、完成练习十二T1。
(1)读题,画出题目中的关键句。
(2)学生说一说“一桶油用去”和“黑兔是白兔的”各表示什么意思?
(3)引导学生说出并在书上写出数量关系式。
3、小结解题策略。
学生独立解答,之后进行交流汇报。
画出题目中的关键句
说一说各表示什么意思?
独立解答,并指名板演。
四、小结
全课总结:这节课学习了什么?你有什么收获?
五、作业
练习十二T2、3
学生练习。
《比的应用》教学设计10
1 房屋建筑结构优化方法的重要性
如何尽量降低投入资金,并保证房屋建筑的结构设计的质量乃时代发展的需求,这也是许多建筑企业以及投资人员愈发注重的问题。施工人员必须将确保建筑质量安全当作前提与基础,精细划分设计方案里的所有细节,并通过相对先进的设计理念以及技术,掌控好工程造价。通过相关的数据体现的状况而论,同没有通过设计优化的建筑对比来讲,进行房屋结构设计优化以后,经费能够降低 8% ~22%.可是,对于实际操控而言,由于被多种环境束缚,想要完全施展,则面临较多困境,并且也无法令优越性较好地发挥出来。
对于优化房屋建筑结构设计而言,可以令建材的性能以及机械设施的性能完全展现出来。如此,与之前的建筑结构设计对比,更具优势。优化建筑结构设计以后,工程造价的资金便能有效降低,进而令企业可以获得较高的经济效益。
并且优化建筑结构设计之后,能够完成房屋结构里所有单元的有机结合,进而提高了建筑的质量,对人们的居住安全提供了良好的保障。所以,想要令房屋结构更加具有实用性与经济性,就要进行优化房屋的结构设计[1].
2 建筑结构优化在房屋建设应用中的步骤
2. 1 创建结构优化的模型
在进行房屋结构整体必要优化设计当中,要对设计变量采取有效选择,确定目标函数,并确定束缚的条件,以便展现最佳设计。
2. 2 对优化设计的核算方案进行设定
通过可靠度进行的房屋结构优化设计遇到较多束缚,且非线性优化问题和繁琐的多变量,在执行相应分析和核算时要将存在束缚的优化问题转变成无束缚。通常会通过Powell 法、拉氏乘子法以及复合形法进行核算。
2. 3 执行程序的相应设计
通过可靠度执行的房屋结构优化设计的基础模型乃至所运用的优化设计的核算方式,能够编排一个运算速度较快并功能完善的综合应用程序。
2. 4 结果分析
对于此过程而言,需要从全面角度进行分析,并对问题采取多方面考虑,这一步骤在建筑结构优化中特别关键。合理选择设计方案,不仅可以保障结构的安全性、实用性、美观性以及合理性,还可以对资金投入具有较大的节约作用。只在结构设计优化中注重经济节约而忽视技术要求,是错误的。同理,只注重技术要求而忽略经济要求,也不正确。我们一定要对两者采取合理配置,才可以符合相应准则[2].
3 结构设计优化技术的实践应用
3. 1 房屋建筑的总体性和局部性优化
由层次来讲,包括了建筑的总体设计体系、结构相关体系、安装体系等,所有独立的体系又具备了许多下属体系。在进行房屋设计时,设计人员要对所有下属系统采取优化,打破关联的横向性,完成叠加型工程。所以,在执行结构优化时要由总体入手,才可以完成整体设计优化。
3. 2 建筑寿命优化及阶段性优化
在工程使用年限里,对所有阶段都要执行相应的方案优化。房屋设计人员要考量所有阶段的特征,通过真实结论采取优化方式的确定,进而对工程的总体寿命进行科学优化。如此,不仅能保障建筑质量,还可以提升建筑企业经济效益。
3. 3 桩基础具体优化
建筑里的桩基础可以分成灌注桩以及预制桩。灌注桩对于总体施工的质量较难把握,并且操作技巧繁琐,时间较长。所以在符合沉降标准的前提下,要采用预制桩的施工,进而降低相应的工序。而且随着桩基的持续加深,土壤自身对桩基的摩擦逐步加大,一定要选取较长的预制桩。
3. 4 对建筑主体上部结构采取科学性优化
房屋建筑上部结构设计应当创建相应的模型且进行系统优化。应当先进行剪力墙设置,确保剪力墙总体质量的均衡,如此可以令楼层中平面刚度的核心点与楼层总体的结构重心重合,来降低地震或风力造成的破坏。剪力墙的暗柱采用普通型钢材而成,一旦使用较大的剪力墙,就能够降低相对的钢筋使用数量,降低对应的成本。如果建筑物的自身不具有相应环境,就不可设置过大的`剪力墙。
3. 5 结构优化和建筑优化保障协调
针对结构的设计而言,只有确保建筑的整体结构以及平面设计相配合,才可以完成建筑自身的美观以及结构的匹配效果。针对建筑系统而言只需要确保自身的风格。进行楼体结构设计时,结构本身受力较大的转角范围,要选择高强度建筑材料来当作承重材料,以便更好的降低结构自重。总体而言,要确保正确的叠加,防止结构扭转的状况出现。
3. 6 结构优化和排水系统优化保持协调
要将房屋建筑中排水系统设定在地下室并且确保管道的预留尺寸以及预留深度要与实际标准相符,针对楼板自身的钻孔位置进行加固。并且,要加强水平方向管线贯穿柱或梁的调整,要尽量压低此类现象的发生概率。一旦管道在建设中超出承重墙,就一定要对墙体进行加固[3].
3. 7 结构优化和电气优化确保协调
电气管线安装是通过导线方式设定于金属管体外端或墙体、楼板之处,如此设定或许为预制结构施工形成较大困难。因此,如果想要管线穿过梁体,就要事先在梁体上段保留相应的空洞,且确保梁体宽度与相符的墙体宽度相同。
4 结束语
想要进行好房屋结构优化设计,工程师就要具备丰富的工作经验,并且要真正掌握房屋结构优化设计的相应规范。通过不懈的努力,房屋结构设计优化技术将更为成熟,从而为房屋安全性、实用性进行确保,以保百姓的生命财产安全。
参 考 文 献
[1] 邹俊。 建筑结构设计优化方法在房屋结构设计中的现实应用[J]. 科技传播,2010( 19) : 37.
[2] 孙大伟。 浅析建筑结构中的优化设计与应用[J]. 科技创新与应用,2012( 23) : 49 -50.
[3] 鄢皓。 试谈结构设计优化技术在房屋结构设计[J]. 佳木斯教育学院学报,2012( 4) : 75 -80.
《比的应用》教学设计11
教学内容
第23~24页例1、例2以及相应的“做一做”,练习五第1~4题、
教学目的
1、让学生掌握用比例解应用题的方法、
2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、
教学重难点
利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。
教学过程
一、复习
1、判断下面各题中的两个量成什么比例关系?
1)、速度一定,路程和时间(正)
2)、三角形的面积一定,底和高(反)
3)、一个为0的自然数与它的倒数(反)
4)、Y=3XY与X(正)
5)、每块砖的面积一定,砖的块数和总面积(正)
二、引入
一辆汽车从甲地开往乙地行驶路程和时间表:
路程(千米)70140350……
时间(小时)125……
(1)、观察提问:
1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?
为什么?师从表中圈出140350
25
师:将其中一个数当作未知数能编一道就用题吗?
2)、学生试编
如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?
3)、生汇报所编之题,(选其中一题)师出示例1
师:你们自编的题目会用以前学过的方法解答吗:
学生试做;汇报:(师板书)
生:归一140÷2×5
倍比140÷(5÷2)
分数140÷2/5或140×5/2
方程140÷2=X÷5
师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?
今天我们就探讨如何用比例解答应用题(板书课题)
二、新知
1、学生分组讨论,尝试用所学的比例知识来解答应用题。
2、讨论后,请两组学生上来写写他们的列式。
解:设两地之间的距离有X千米
140/2=X/5
师:请讲讲你们的解题思路
学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的.意义列出等式。
师:140/2表示什么?X/5表示什么?
3、学生总结一下解比例应用题的步骤:
1)、读题,找出条件和问题。
2)、找准变量和定量,判断两种相关联的量成什么比例。
3)、设未知数。
4)、根据比例意义列出等式并解答。
齐读解题步骤,师:这几步中,最关键的是哪步?
4、出示刚才学生编的另一题:
一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。
师:这道题的定量变了吗?路程和时间成什么比例关系?
生试独立完成。集体订正。请学生讲讲解题思路。
三,巩固练习:
1、补充条件,使它成为一道完整的应用题,并用比例解答。
一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米?
学生1:补充“3小时”后,全体学生试做。
学生2:补充“再织3小时”学生试做。
请不同做法的学生板书,并说说解题思路。
生1:间接设生2:直接设
解设3小时织布X米解设一共可织布X米
80/4=X/4+380/4=X/3
X=60X=140
60+80=140
《比的应用》教学设计12
教学目标:
1、结合具体的情景,体会理解分数加减法的意义。
2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
教学重点:
理解并掌握异分母加减法的计算方法与法则。
教学难点:
掌握异分母分数加减法的算理与算法。
教学过程:
一、复习引入
(一)复习有关分数单位的知识。
1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。 )
2、填一填 7/16 的分数单位是( ) ,它有( )这样的分数单位。 7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?
(二)复习通分
2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。 出示课题:分数加减法
二、创设情境、提出问题
1、同分母分数加减法 出示例 1(展示课件)
师: 你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)
抽学生口头汇报,同时老师根据学生的回答课件出示。
引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。
生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。
生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16-1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。
师:你们真能干,不仅提出了问题,还正确的解答出来了。
师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。
师:有谁能用自己的话说一说分母相同的分数怎样加减呢?
生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。
生举出类似的算式计算(全班练习)
2、异分母分数加减法
师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?
生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的`区别?(分母不同)
师:说说结果是怎样得来的?预设:画图得出结果。 把分母变成同分母分数,再计算得出来的。 把分数化成小数计算,再把计算结果的小数化成分数。 ……
师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?
学生说出自己的意见
师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。 1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4
师:同学们在计算过程中,最关键的步骤是什么?
生:最关键的步骤是先通分,再计算。
师:说一说,异分母分数的计算方法?
生:异分母分数相加减,先通分,再按同分母分数加减法计算。
三、学生练习
1、基础练习 填一填:(出示课件)
①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。
②异分母分数相加减,先(算一算: 4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24
2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。 得出:1/a+1/b=(b+a)/ab
3、接龙游戏
1/2+1/3 3/4-1/2
四、课堂小结
1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9-6/9=1/9 通分),再按( 同分母分数加减法 )计算。 (每组 6 个同学,一个接一个地计算,看哪组又对又快)
《比的应用》教学设计13
一、教学内容分析
(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)
《语文课程标准》指出:低年级阶段学生“会认”与“会写”的字量要求有所不同。要运用多种识字教学方法,创设丰富多彩的教学情境,引导他们利用各种机会主动识字,力求识用结合。《文具的家》是一篇记叙性的文章,文字活泼,富有童趣,并配有两幅生动有趣的插图,符合一年级儿童的审美情趣和阅读心理。本课教学设计意在从学生兴趣出发,通过猜谜语的方式导入,并进行扩词训练,借助课文插图让学生理解课文的主要意思,感受人物的情感。
教学中创设趣味的学习环境,用“闪电读词”和“闪电出字卡”的游戏调动学生自主识字的积极性。在课文阅读方面将以“朗读”训练为主,指导学生通过朗读认识生字、会读对话、了解内容,体会课文表达的思想感情和趣味。借助顺口溜总结整理物品的方法,通过“文具认领会”和“整理书包比赛”鼓励学生养成爱护文具的好习惯。
二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点)
[教学目标]
知识与技能
1.会认“具、次、丢”等生字,会写“文、次、找”等生字,能自主积累词语。
2.能正确、流利、有感情地朗读课文。
情感态度与价值观
了解各种文具的用途,懂得爱护学习用品。
过程与方法:正确、流利、有感情地朗读课文,了解课文内容,懂得要爱护学习用品。
[教学重难点]
重点:会认、会写生字。有感情地朗读课文。
难点:指导学生把对课文的感悟转化为自己日常的学习习惯。
三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)
《文具的家》是一篇记叙性的文章,文字活泼,富有童趣,并配有两幅生动有趣的插图,符合一年级儿童的审美情趣和阅读心理。本课教学设计意在从学生兴趣出发,通过猜谜语的`方式导入,并进行扩词训练,借助课文插图让学生理解课文的主要意思,感受人物的情感。
四、教学过程(设计本课的学习环节,明确各环节的子目标)
第一课时
教学过程
一、情境导入
1.同学们的文具盒里都摆着铅笔、橡皮,能说说它们有什么用吗?
2.学生自由发言。教师归纳:铅笔、橡皮、尺子等文具,能帮我们做这么多事情,真是我们学习上的好伙伴哪!(出示捡到的文具)可是这些小伙伴却被它们的小主人弄丢了,它们很伤心,让我们一起来帮助它们找个家吧!
3.板书课题,齐读课题。
4.随文识字(具):你有什么办法记住它?
下列哪些物品是文具?用“√”标出来。
橡皮铅笔水杯日历书包尺子
二、初读课文,学习生字
1.借助拼音自由读课文,画出自己不认识的字。
2.同桌互读。同桌有困难,请你帮帮他;同桌读得好,请你夸夸他。
3.“小老师”领读生字。教师指导生字并扩词。
4.齐读生字——开火车认读生字——“火眼金睛”游戏,巩固生字学习。
选出下列汉字的正确读音,画上“○”。
具(jǜjù)新(xīnxīng)
仔(zǐzhǐ)所(sǔosuǒ)
三、反复阅读实践,读通课文内容
1.自由读文,标出自然段序号。
2.同桌互助,帮助对方把课文读通、读顺。
3.教师范读课文,学生边听边认读生字。
4.这篇课文一共有个自然段。妈妈的话出现在第几自然段。
四、整体阅读课文,读懂课文,质疑思考
1.用自己喜欢的方式读课文,说说自己读懂了什么。
2.你也会像小贝贝那样经常丢东西吗?你想过为什么吗?
3.怎样才能做到不丢文具呢?
4.鼓励学生互动,结合课文和生活实际谈自己的想法。
用“——”画出表现贝贝经常丢东西的句子。
第二课时
一、观察图片,训练想象,培养习惯
1.出示文具卡通图片,假如你就是文具中的一员,你会想些什么?说些什么?
2.先自己想,再做交流,鼓励学生说出与众不同的想法,引导学生自主表达。你的铅笔盒里都有哪些文具?
二、联系实际,结合课文,自我教育
1.出示课文中妈妈的话。指名学生朗读。
2.听了妈妈的话,贝贝是怎样做的?她做得对吗?(学生自由回答)
(1)说说你们的妈妈有说过这样的话吗。
(2)你有没有认真听妈妈的话呢?
3.联系实际,自我教育。
(1)翻翻自己的小书包,说说里面有哪些小伙伴。
(2)说说你的小伙伴们都好吗?它们有家吗?它们的家干净整洁吗?
(3)学生自由回答,推选说得最好的学生作总结。
文具的家是?()
A.书包B.文具盒C.贝贝的家
4.妈妈告诉贝贝要怎样做,文具才不会丢?
三、学习会写字,辨析字形,正确书写
1.复习“文具”,并用文具说一句话。
2.拿出识字卡片,独立分析:能用什么方法记住这些生字?
3.同桌检查汇报,再说说哪个字最难记。
4.针对学生的难点,教师指导。
5.生字找朋友。组词练习,巩固记忆。
6.描红抄写。教师巡视。
比一比,组词语。
欠()次()力()办()上()让()平()伞()
四、拓展延伸
1.学完课文,同学们都明白了要爱护学习用品,每天要收拾好它们。下面我们就来举行一个整理书包的比赛,看谁做得又快又好。
2.学生整理书包。
3.评出优胜者并给予奖励,鼓励其他同学。
描一描,写一写。
找包
五、教学策略选择与信息技术融合的设计(针对学习流程,设计教与学方式的变革,配置学习资源和数字化工具,设计信息技术融合点)
教师活动预设学生活动设计意图
4.随文识字(具):你有课件展示,便于分析。形象、直什么办法记住它?
下列哪些物品是文具?
用“√”标出来。
橡皮铅笔水杯日历
书包尺子
观。
二、初读课文,学习生字
1.借助拼音自由读课文,画出自己不认识的字。
2.同桌互读。同桌有困难,请你帮帮他;同桌读得好,请你夸夸他。
3.“小老师”领读生字。教师指导生字并扩词。
4.齐读生字——开火车认读生字——“火眼金睛”游戏,巩固生字学习。
选出下列汉字的正确读
音,画上“○”。
具(jǜjù)新(xīnxīng)
仔(zǐzhǐ所(sǔosuǒ)
Ppt展示节约时间,便于校对。观察图片,训练想象,培养习惯Ppt展示图声结合,提高学生的学习兴趣。生字书写动画展示形象直观,记忆较深。
六、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)
1、给学生以充分发挥的空间:
由于学生的拼音已掌握较好,我采用了让学生预学生字、个别字老师带学的方法,效果较好。让学生事先预读课文,简单理解课文讲了件什么事,学生也完成的较好。教学过程中学生能自己答出的问题就让学生自己答,不包办。
2、让信息技术手段在课文中较好的发挥作用:
在本课教学中信息技术手段的采用对学生学课文起到了很好的促进作用。像最开始的用品出示投影图、学习生字用投影显示、讲课中用录音配乐烘托气氛。用投影图的出示增加直观效果,在学生读课文或讲故事时配乐,这些都激发了学生学习兴趣,促进了学生对课文的学习。
3、以启发式教学带领学生学课文:
对课文进行学习分析时,教师不是一味地讲或读,而是采用了引导启发得手段,学生能说的让他们尽量说,老师只是在学生确实无法弄懂的情况下才讲解,以避免传统教学中的满堂灌现象,使学生学会自主的学习。
4、教学中的不足之处:
信息技术手段的采用还较简单,如能再花时间做成课件、动画效果会更好。由于课时的限制,有不少学生的学习能力锻炼、发挥不够,还需改进。
七、教学板书(本节课的教学板书。如板书中含有特殊符号、图片等内容,为方便展示,可将板书以附件或图片形式上传。)
[教学板书]
文具的家
铅笔橡皮
转笔刀文具盒仔细疼爱
平平安安
《比的应用》教学设计14
【教学内容】
小学数学实验教材(北师大版)六年级上册第一单元P27-28内容。
【教学目标】
进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。
通过解决实际问题进一步体会百分数与现实生活的密切联系。
【教学重点】
根据百分数的意义列方程解决实际问题。
【教具准备】
多媒体课件。
【学具准备】
【教学设计】
教学过程
教学过程说明
导入
通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)
家庭消费
下表是笑笑的妈妈记录的家庭消费情况:
年份
1985年
1995年
20xx年
食品支出总额占家庭总支出的百分比
65%
58%
50%
其他支出总额占家庭总支出的百分比
35%
42%
50%
你能给大家说说表格所表示的意思吗?
根据表中数据,你有什么发现?
教师提出问题:
1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?
你准备怎样解答这个问题?(小组讨论)
※你觉得直接列式方便吗?为什么?
展示解答过程
解:设这个家庭1985年的总支出是X元。
65%X-35%X=210
30%X=210
X=700
6、如果20xx年食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元?
※学生独立解决
※教师评价
下表是笑笑的妈妈记录的家庭消费情况:
年份
1985年
1995年
20xx年
食品支出总额占家庭总支出的百分比
65%
58%
50%
其他支出总额占家庭总支出的百分比
35%
42%
50%
三、试一试
1、出示教科书P27试一试第2题
2、九五折是什么意思?
3、学生独立解答然后班内交流
解:设这本书的原价是X元。
X-95%X=6
5%X=6
X=120
四、练一练
教科书P28练一练第2题
“增产了两成”是什么意思?
展示解答过程:
解:设去年的产量是X吨。
X+20%X=36000
120%X=36000
X=30000
2、教科书P28练一练第4题
3、教科书P28练一练第5题
五、课堂总结
通过今天的学习你有什么收获?
课前布置学生了解有关生活中百分数的知识。
激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。
提出“各项支出与总支出的.关系”,使学生从中了解百分与生活的关系。从数据的变化,让学生体会我们国家的经济不断发展,我们生活水平的不断提高。
学生己有了百分数的知识基础,对于解答这题让学生自己讨论,在讨论交流中,学生感受到百分数,体会百分数与现实生活的密切联系。
由于讨论的问题和数据都来自于学生,这样就使百分数更具有实际意义,学生的学习兴趣和积极性也会大大提高。
拓展学生的思维。综合应用所学的知识解决实际问题。
结合实际对学生进行思想道德教育,学会节俭。
《比的应用》教学设计15
教学重点:
1、掌握两步分数应用题的解题思路和方法。
2、画线段图分析应用题的能力。
教学难点:
渗透对应思想。
教学过程:
一、复习、质疑、引新
1.指出下面分率句中谁是单位1(课件一)
①乙是甲的;
②小红的身高是小明的
③参加合唱队的同学占全班同学的;
④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。
2.口头分析并列式解答
①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。
二、探索、悟理
1.出示组编的例题
例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?
学生审题后,教师可提出如下问题让学生思考讨论。
①小华储蓄的钱是小亮的,是什么意思?谁是单位1?
②小新储蓄的`是小华的,又是什么意思?谁是单位1?
思考后,可以让学生试着把图画出来。
(演示课件)
然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。
由此基础上试列综合算式:
2.做一做
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1)可先让学生一起分析数量关系,然后独立画图并列式解答。
请一名中等学生板演。
(张)
(张)
答:小明有40张。
③你能列综合算式吗?
三、归纳、明理
1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。
①认真读题弄清条件和问题
②确定单位1找准数量关系
根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。
③列式解答
板书为:抓住分率句,找准单位1,
画图来分析,列式不用急。
2.质疑问难
四、训练、深化
1.联想练习根据下面的每句话,你能想到什么?
①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)
②修了全长的
③现在的售价比原来降低了
2.先口头分析数量关系,再列式解答。
①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?
3.提高题。
六、板书设计
分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?
【《比的应用》教学设计】相关文章:
比的应用教学设计06-19
《比的应用》教学设计06-09
比应用教学设计06-07
《比的应用》教学设计06-17
《比的应用》讲课设计与深思09-18
六年级《比的应用》教学设计11-17
小学语文信息技术应用成果教学设计方案01-08
装帧设计教学设计04-19
设计校园教学设计04-14
自考应用艺术与设计专业自我鉴定07-23