我要投稿 投诉建议

《乘法分配律》教学设计

时间:2024-05-19 18:25:01 教学设计 我要投稿

(经典)《乘法分配律》教学设计

  作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。写教学设计需要注意哪些格式呢?以下是小编收集整理的《乘法分配律》教学设计,希望对大家有所帮助。

(经典)《乘法分配律》教学设计

《乘法分配律》教学设计1

  一、教材依据

  义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)

  二、设计思想

  “乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。

  在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的.目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。

  三、教学目标:

  1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;

  2、理解和掌握乘法分配律并会用字母表示;

  3、能够运用乘法分配律进行简便计算;

  4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

  四、教学重点:

  引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。

  五、教学难点:

  乘法分配律的应用,进行一些简便计算。

  六、教学准备

  多媒体教学课件

  七、教学过程

  (一)情境导入,发现问题

  昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?

  课件出示:图片一共贴了多少块瓷砖?

  (1)谁能估一估,贴了多少块瓷砖?

  (2)谁来用自己的方法来验证估计是否正确?

  还有不一样的方法吗?谁来说说看?(生口答,师板书)

  板书:6×9+4×9(6+4)×9

  =54+36=10×9

  =90(块)=90(块)

  (3)请同学们观察,看看有什么发现?(学生讨论,汇报)

  (二)引导探究,发现规律

  1、猜想、验证

  (1)能不能利用你的发现举些例子来呢?

  生:举例

  (2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?

  (学生小组合作尝试,进行探索)

  2、概括、归纳

  (1)说说你们刚才验证的情况。

  生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。

  生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。

  生3……

  生4……

  (2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?

  问:我们能不能用一个式(字母)把乘法分配律表示出来呢?

  生:(a+b)×c=a×c+b×c

  (3)等号表示什么意思?(这个等式反过来也成立)

  (三)加强应用、深化理解

  我们发现了乘法分配律,它又有怎样的应用呢?

  (课件分步出示练习)

  1、填一填(课本49面练一练第一题)

  2、请同桌同学合用研究下面这些题目,怎样计算比较好?

  (80+4)×2534×72+34×28

  (1)学生讨论研究;

  (2)汇报计算方法,重点说为什么这样算;

  (3)小结:通过研究,应用乘法分配律可以使一些计算简便。

  (四)巩固练习、解决问题

  (课件分步出示)

  1、填一填

  (10+7)×6=__×6+__×6

  8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)

  2、同桌合作研究下面这些题目,怎样计算比较好?

  (80+4)×2534×72+34×28

  2、下面这些题,能用简便方法计算吗?怎样计算?

  (20+4)×2532×(200+3)38×29+38×1

  39×10138×29+3825×41

  (五)课堂小结

  1、说说今天我们研究了什么?

  2、大家想一想,我们是怎样发现乘法分配律的呢?

  3、乘法分配律有什么应用?

《乘法分配律》教学设计2

  知识与技能目标:

  1、经历探索的过程,发现乘法分配律,并能用字母表示。

  2、能够运用乘法分配律进行一些简便的计算。

  过程与方法:

  培养学生观察、归纳、概括等初步的逻辑思维能力。

  情感与价值观:

  渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。

  教学重点

  理解并掌握乘法分配律

  教学难点

  乘法分配律的推理及运用

  教学准备

  多媒体电脑、课件

  教学过程

  一、用简便方法计算下面各题。

  452+199+24838×125×8×3

  二、比赛激趣,提出猜想

  (1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)

  10×37+10×63

  10×(37+63)

  (2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  10×37+10×63=10×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  (设计意图:通过一道题目里的`两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)

  三、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、(1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)

  (设计意图:学生用不同的方法列式计算,为探讨规律做准备。

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?

  5、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)

  (设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?

  (a+b)×c=a×c+b×c

  (5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。

  四、探索发展,应用规律

  (1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  (设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)

  五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)

  1、请大家根据运算定律在下面的_里填上适当的数。

  (10+7)×6=______×6+______×6

  8×(125+9)=8×______+8×______

  7[]×48+7×52=______×(______+_______)

  2、将得数相等的算式用线连起来。

  3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?

  六、全课小结

  请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

《乘法分配律》教学设计3

  教学目标

  1.使学生理解乘法分配律的意义.

  2.掌握乘法分配律的应用.

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用

  教学难点:乘法分配律的反应用.

  教具:教学课件一套

  教学过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  7×28+7×72

  7×(28+72)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  7×28+7×72=7×(28+72)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

  2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

  (1)看到这幅图画,你了解到了什么信息?你想提什么问题?

  (2)你能用两种方法列出综合算式吗?

  (3)学生独立列式,教师巡视

  (4)交流反馈:你是怎么想的,怎样列式计算

  板书:65×5+45×5 (65+45)×5

  (5)观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的'规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  用字母表示:〔a+b〕×c=a×c+b×c

  用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

  (5)大屏幕出示关于乘法分配律的总结,学生齐读。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (8+4)× 25 34 ×72+34 ×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  四 、巩固内化

  1、 做“想想做做”第1题

  学生独立填写,指名报,全班共同校对。

  明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

  2、 做“想想做做”第2题

  学生自己判断。然后请生说说判断的依据。

  3、 做“想想做做”第3题

  让每位学生都用两种方法计算长方形的周长,指名板演。

  明确:这两种算法有什么联系?符合什么规律?

  小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

  4、 做“想想做做”第4题

  让学生各自按运算顺序计算,指定两人板演,共同订正。

  提问:每组两道算式有什么联系?哪一题的计算比较简便?

  小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

  五、 总结回顾

《乘法分配律》教学设计4

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。

  教学过程

  一、创设比赛场景,在活动中激趣

  谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?A组B组

  (1)135×6+65×6(1)(135+65)×6(2)9×37+9×13(2)9×(37+13)

  在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

  A组B组

  (1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

  谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)小结:这真是一个了不起的发现。一切数学知识________于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

  谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的'最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

  二、创设活动情境,在合作中探究

  1、交流算法,初步感知

  (课件出示例题情境图)

  谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

  (1)学生的选择方法1:买5件夹克衫和5条裤子,一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师巡视。

  [教师板书:(65+45)×5=65×5+45×5],让学生读一读。(2)学生的选择方法2:买5件短袖衫和5条裤子

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  [教师板书:(32+45)×5=32×5+45×5]

  启发:比较这两个等式,它们有什么相同的地方?2、深入体验,丰富感知。

  现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。在得数相同的两个算式中间的□里画“=”(1)(28+16)×7□28×7+16×7

  (2)15×39+45×39□(15+45)×39

  (3)74×(20+1)□74×20+74

  (4)40×50+50×90□40×(50+90)

  (5)(125×50)×8□125×8+50×8

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程),谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

  学生举例并组织交流。(比较这些等式是否具有相同的特点)3、反思学习,揭示规律

  提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思] 小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

  (课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

  对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

  【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

  三、巩固内化知识,在实践中运用

  谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

  1、大显身手

  出示“想想做做”第1题,让学生在书上填一填。师:第2题你是怎么想的?

  小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

  2、生活应用

  (“想想做做”第3题)

  小结:说说两种方法的联系。

  3、巧妙运用

  (“想想做做”第4题)(同桌一人做一组,做在练习本上)谈话:每组两道算式有什么联系?哪一题计算比较简便,现在你知道上课开始时为什么B组同学算得快吗?小结:乘法分配律可以使计算简便。 4、明辨是非

  我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

  王小明这样计算:

  (3+2)×(34+36)

  =5×70

  =350(人)

  ①观察一下,你赞同王小明的算法吗?为什么?②要用乘法分配律,要有什么条件?5、巧猜字谜

  猜一猜,等号后边是三个什么字?人×(1+2+3)=

  6、大胆猜想

  如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?学生小组交流猜想。

  谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!教师组织、引导学生总结得出:(a—b)×c=a×c—b×c

  小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

  四、回忆梳理知识,在反思中总结今天这节课,你有什么收获?

  五、布置作业

  “想想做做”第5题。

《乘法分配律》教学设计5

  教学目的:

  1、引导学生探究和理解乘法分配律。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3。使学生感受数学与现实生活的联系,能用所学知识解决简单的.实际问题。教学重点:

  乘法分配律的意义和应用。教学难点:

  乘法分配律的反应用。教具准备:

  多媒体课件教学过程:

  一、铺垫孕埋伏

  1、复习

  下列算式中运用了哪个乘法运算定律?256×36=36×256 17×8×25=17×(8×25)2×56×50=2×50×56(125×8)×5=125×(8×5)

  这就是上节课我们学习乘法分配律的两个定律,那个同学能回忆一下呢?其实乘法还一种定律你们知道吗?想知道是什么吗?今天我们就来学习这个定律。(板书课题)

  二、新授

  1、观察情境图,可以提出什么问题?(课件出示例题)小组讨论,尝试用不同的方法解决。教师引导学生用多种方法解答。

  学生汇报自己的解法。引导学生说明不同算法的理由。(1)(4+2)×25

  =6×25

  =150(人)

  4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。(2)4×25+2×25

  =100+50

  =150(人)

  4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。小组合作:

  (1)两组算式有什么相同点?

  (2)两组算式有什么不同点?

  (3)两组算式有什么联系?汇报。

  教师要根据学生的汇报,灵活地进行引导,总结出要点。你还能举出像这样的几组算式吗?学生举例。

  根据学生举例板书。

  到底我们举的例子是不是符合这样的规律呢?请学生验证。请学生用语言表述出发现的规律。课件出示:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c你有什么好方法帮助我们大家记住乘法分配律?简记为:

  和与一个数相乘=积相加

  三、巩固练习

  1、数学医院

  56×(19+28)=56×19+28 32×(7×3)=32×7+32×3 64×64+36×64=(64+36)×64

  2、用乘法分配率计算下面各题

  117×3+117×7

  25×(200+4)

  265×95+265×5

  25×(10+4)

  24×(200+5)

  四、拓展练习

  103 × 12

  20 × 55

  五、小结

  结合屏幕,说一说通过本节

  课的学习,你有什么收获?板书设计:

  乘法分配律

  (a+b)×c=a×c+b×c a×(b+c)=a×b+a×c

《乘法分配律》教学设计6

  【教学目标】

  1. 让学生经历乘法分配律的探索过程,理解并掌握乘法分配律。

  2. 在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。

  3. 让学生在数学活动过程中获得成功的体验,进一步增强学习数学的兴趣和自信心。

  【教学重点】

  理解并掌握乘法分配律,并会运用乘法分配律进行简便计算。

  【教学难点】

  发现并归纳乘法分配律。

  【教学过程】

  一、探究问题,提炼规律

  1. 初步感知。

  展示主题图,并提问:

  师:你知道哪些数学信息?要求什么问题?

  师:图中的问题可以怎样列式?

  要求只列式,不计算,学生独立列式后汇报。

  教师板书:(6+4)×24 6×24+4×24?摇

  【设计意图】

  要求学生只列式,不计算,为学生进行猜想验证提供可能,同时让学生明白,同一道题用不同的方法解答,其结果肯定相同的道理。

  让学生说出每种解法先算什么?再算什么?

  师:这两道算式的结果应该怎样?为什么?

  反馈:因为这两道算式都是求四、五年级一共要领的跳绳根数。

  学生通过计算结果来验证上述结论。

  教师组织谈话:这两道算式不一样,但都算出了四、五年级一共要领的跳绳根数。在数学上,我们可以把相等的两个算式写成一个等式。

  教师板书:(6+4)×24=6×24+4×24。

  组织谈话:刚才用了两种方法说明这两道算式可以组成一个等式,一是这两道算式都是求同一个问题,二是计算结果相等。有没有别的方法说明它们相等?

  教师引导学生从乘法的意义来解释:等式左边算式先用6加4得10,再乘24就是表示10个24相加的和是多少;右边算式先算6个24相加与4个24相加各是多少,再求和也是表示10个24相加的和是多少。

  组织谈话:今天就来研究既有乘法又有加法的'这一类等式。

  明确:等式左边是6加4的和乘24,右边是左边括号里的两个加数分别与24相乘,再把所得的积相加,结果相等。

  【设计意图】

  本环节,学生经历了猜想、验证的过程,从三个方面理解两个算式为什么相等,初步感知规律,为进一步探究规律夯实基础。

  2. 出示:计算下面两组算式,是否相等。

  ①(2+3)×82×8+3×8?摇

  ②(4+7)×64×6+7×6

  学生口算得出结果,再判断。

  3. 教师组织谈话:在数学上,我们把通过观察几道等式后发现的规律称之为猜想,是不是任意三个数组成这样的算式,都具有这样的规律呢?还需要通过举例子来验证。

  (1)师生合作验证:

  先请一位学生随机说出三个数。

  提问:两个数的和同一个数相乘怎么表示?

  根据左边的算式,教师要求学生写出右边的算式。

  学生口算结果,验证两个算式是否相等。

  (2)同桌两人合作:

  左边的同学任意找出三个数,并写出两个数的和同一个数相乘,右边的同学写出对应的算式,再分别算出结果,验证是否相等。(学生汇报,教师板书)

  提问:这样的例子,能写完吗?(板书省略号)

  4. 师:观察上面每个等式的左边和右边,有联系吗?有什么联系?

  师生小结:两个数的和与一个数相乘,等于两个加数分别与这个数相乘,再把两个乘积相加。

  5. 师:你们发现的规律就是乘法分配律。(板书)

  6. 师:你会用自己喜欢的方法表示出乘法分配律吗?

  【设计意图】学生通过举例验算的方法去感知规律,围绕这一目标,对所列的算式,进行观察、比较和归纳,提出猜想并举例验证,学生在真实体验中感受规律,建构乘法分配律,用语言表示规律便水到渠成。让学生用自己喜欢的方式,表示乘法分配律,其目的有三:一是检验是否正确理解规律,二是让学生再次感受和明晰乘法分配律的结构,三是调动学生学习的主动性。

  师:在数学上,我们一般用字母式子来表示乘法分配律。如果用字母a、b、c表示三个数,乘法分配律可以写成:(a+b)×c=a×c+b×c。(板书)

  师:字母a、b、c可以是哪些数?分别相当于例题中的哪个数?

  二、尝试练习,运用规律

  1. 根据乘法分配律,在里填上合适的数。

  (42+35)×2=×+×

  72×(30+6)=×+×

  27×12+43×12=(+)×

  15×26+15×14=(+)×

  学生独立完成,集体评讲。

  完成前两题后,提问:两个数的和乘一个数,都等于什么?

  完成第三小题后,提问:你是怎么想的?谁是相同数?

  明确:在求两积之和的算式中,如果有相同的乘数,那么这个相同的乘数可以放在括号的外面。

  2. 根据乘法分配律,在里填上运算符号。

  (38+16)×2=382162

  94×12+94×38=94(1238)

  25×(20+4)=2520254

  63×50+63×2=63(502)

  学生独立完成后,集体评讲。

  追问:如何确定圆圈内的运算符号?

  3. 横着看,在得数相同的两个算式后面画“√”。

  ①(28+16)×7 28×7+16×7?摇

  ②15×39+45×39 (15+45)×39?摇

  ③40×50+90×50 40×(50+90)?摇

  ④74×(20+1) 74×20+74?摇

  学生口答,教师重点讲一讲第③题,相同数是50,40×50+50×90应该等于50×(40+90),40×(50+90)应该等于40×50+40×90。

  第④题,让学生明白74×1可以写成74,反过来,74也可以写成74×1。

  4. 连线。

  3×17+5×17 25×(4×6)

  (5×3)+17

  (18+4)×5 (3+5)×17

  18×5+4×5

  18×5×4×5

  (25×4)×6 25×4+25×6

  学生口答,让学生说一说自己的思考过程。通过左边第三个算式,帮助学生理解乘法分配律的内涵与乘法结合律的区别。

  5. 每组中两道题的计算结果相同吗?哪一题的计算比较简便?

  (1)64×8+36×8 (2)12×30+12×5?摇(64+36)×8 12×(30+5)

  本题意在揭示,符合乘法分配律的算式,具体计算时,有时先求和简便,有时先求积简便,为乘法分配律的运用作铺垫。

  【设计意图】由于乘法分配律与前面学过的运算律相比,形式上变化大,设计练习时,从填数开始,由易到难,帮助学生不断修正和提高对乘法分配律的理解。

  三、深度探究,延伸规律

  将原问题改为:四年级比五年级多领多少根跳绳?要求学生用两种不同的方法解答。

  学生汇报,教师板书:

  (6-4)×24 6×24-4×24

  =2×24 =144-96

  =48(根) =48(根)

  摇答:四年级比五年级多领48根跳绳。

  组织谈话:这两道算式,我们也可以用等号连接。

  教师板书:(6-4)×24=6×24-4×24。

  【设计意图】通过改变例题中的数学问题,引出类似的公式(a-b)×c=a×c-b×c,有助于学生全面、完整地理解、建构乘法分配律。

  四、全课总结

《乘法分配律》教学设计7

  【教学内容】

  《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

  【教材简析】

  本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

  【教学目标】

  1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

  2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

  3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

  【教学重点】

  让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

  【教学难点】

  清楚地表述自己发现的规律,理解及应用乘法分配律。

  【教学过程】

  一、创设情境,感知规律

  1.提出问题,列出算式。

  出示情境图

  谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

  信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

  问题预设:济青高速公路全长约多少千米?(板书)

  谈话:请你试着用两种方法在答题纸上解答。

  生独立解答。

  预设:

  2.结合情境,感知规律。

  提出要求:结合线段图说说算式每一步的含义。

  回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

  ②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

  【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的`抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

  二、研究素材,猜测规律

  教师引导学生观察算式谈发现。

  预设发现:两个算式结果相等。可以用等号连接。

  教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

  预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

  ②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

  谈话:根据前面运算律的学习,你有什么想法?

  预设回答:这可能又是一个规律。

  【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

  三、讨论交流,验证规律

  1.举例验证规律。

  谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

  学生独立计算举例。

  指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

  谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

  预设举例:(25+35)×4=25×4+35×4

  (60+50)×2=60×2+50×2

  (65+55)×42=65×42+55×42

  ……

  教师引导学生发现像这样的例子举不完,可以用省略号表示。

  2.观察几组等式的相同点。

  教师引导学生观察这几组等式的左边和右边分别有什么相同点。

  预设回答:①这几组等式的左边都是两个数的和乘一个数。

  ②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

  3.总结规律。

  教师引导学生用自己的话说说这个规律。

  谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

  教师出示乘法分配律。

  谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

  生按要求说什么是乘法分配律。

  谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

  预设回答:可以用字母表示。

  教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

  学生试着在答题纸上写字母表达式。

  指生板演(a+b)c=ac+bc。

  谈话:对于乘法分配律用字母来表示,感觉怎么样?

  预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

  教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

  【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

  四、巩固拓展,应用规律

  1.连一连。

  2.在□里填上合适的数或字母。

  3.火眼金睛辨对错。

《乘法分配律》教学设计8

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一、创设情境,谈话导入

  谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

  二、自主探究,合作交流

  1、交流算法,初步感知。

  提问:从图中你获得了哪些信息?

  再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的`问题吗?请同学们在自己的本子上列出算式,再算一算。

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师板书,让学生读一读。

  谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5。

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

  要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

  学生举例并组织交流。

  3、揭示规律。

  提问:像这样的等式,写得完吗?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

  三、实践运用,巩固内化

  1、“想想做做”第1题。

  谈话:下面我们利用乘法分配律解决一些简单的问题。

  出示“想想做做”第1题,让学生在书上填一填。

  学生完成后,用课件反馈。

  2、“想想做做”第2题。

  你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

  回答第2小题时,让学生说一说理由。

  3、“想想做做”第3题。(略)

  四、梳理知识,反思总结

  提问:今天这节课,你有什么收获?有什么感受想对大家说?

  五、布置作业

  “想想做做”第4、5题。

  [说明]

  数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

《乘法分配律》教学设计9

  《乘法分配律的运用》教学设计及反思

  教学目标

  (一)使学生学会用乘法分配律进行简算,提高计算能力.

  (二)培养学生灵活运用乘法运算定律进行计算的习惯.

  教学重点和难点

  能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计

  (一)复习准备

  1.口算:

  (二)学习新课

  我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

  1.创设情境,激发学生学习积极性.

  出示102×( ).

  请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

  2.教学例6:用简便方法计算.

  (1)计算102×43.

  这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一

  做,对比一下,找出哪种方法简便.

  在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的`数与一个数的和,再应用乘法分配律可以使计算简便.

  (2)计算102×24.

  订正时说明怎样简算的?根据是什么.

  (3)计算9×37+9×63.

  启发提问:

  ①这类题目的结构形式是怎样的?有什么特点?

  ②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

  在学生充分讨论的基础上,师板书:

  提问:这题能简算吗?什么地方错了?应怎样改?

  启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

  2.根据乘法分配律把相等的式子用“=”连接起来.

  讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

  在讨论基础上得出:

  第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

  第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此

  要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

  (四)作业

  练习十四第5~10题.

  教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。

《乘法分配律》教学设计10

  教学目标:

  1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学重难点:

  发现并理解乘法分配律。

  教学准备:挂图、小黑板。

  教学流程:

  一、创设情境,导入新课。

  师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

  看看买什么衣服好看呢。

  二、自主探索,合作交流。

  1.出示:买5件夹克衫和5条裤子,一共要付多少元?

  师问你打算怎样算?

  生口答师板书:

  (65+45)×565×5+45×5

  请学生分别说清两道算式的含义。

  2.师问猜想一下,这两道算式的结果会怎样?

  要验证我们的算式是否正确,应该用什么方法?

  生计算,个别板演。

  证明这两道算式的结果是相等的。

  中间应用“=”接连。

  3.生读算式(65+45)×5=65×5+45×5

  师问等号两边的算式有什么相同和不同?

  生同桌说一说,并汇报。

  4.这两道算式相等是一种巧合还是有规律的呢?

  出示:(2+10)×6=2×6+10×6

  (5+6)×3=5×3+6×3

  师问中间可以用“=”来连接吗?

  5.小组讨论:这三组等式左边有什么特点?

  右边有什么特点?

  生汇报。

  6.师问你能写出具有这样规律的`等式吗?

  生独立写一写,个别板书。

  7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

  生写一写,个别板演。

  8.揭题:乘法分配律

  (a+b)×c=a×c+b×c

  9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

  三、巩固练习,拓展应用。

  想想做做:

  1.在口里填上合适的数,在○里填上运算符号。

  (42+35)×2=42×口+35×口

  27×12+43×12=(27+口)×口

  15×26+15×14=口○(口○口)

  72×(30+6)=口○口○口○口

  强调:乘法分配律,可以正着用,也可以反着用。

  2.横着看,在得数相同的两个算式后面画“√”

  (28+16)×728×7+16×7

  15×39+45×39(15+45)×39

  74×(20+1)74×20+74

  40×50+50×9040×(50+90)

  3.算一算,比一比,每组中哪一道题的计算比较简便。

  (1)64×8+36×825×17+25×3

  (64+36)×825×(17+3)

  让学生体会乘法分配律可以使计算简便。

  4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

  生独立完成并汇报。

  5.你能根据下图列出两

  道综合算式吗?

  上面的两道算式能组成一个等式吗?

  四、全课小结

  师问今天你有什么收获?和你的小伙伴说一说。

  五、课堂作业

  《补充习题》第26页。

《乘法分配律》教学设计11

  教学内容:

  教科书书第54的例题以及55页的“想想做做”。

  教学目标:

  1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。

  2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学重点和难点:

  发现并理解乘法分配律。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习旧知,作好铺垫

  同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)

  今天这节课,我们要来研究乘法的另外一个运算定律。

  二、联系实际,探究规律

  1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!

  2.课件例题情景图。

  (1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)

  (2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?

  指名说出算式,教师随学生回答板书:

  (65+45)×5 65×5+45×5

  让回答的两名学生说说自己的想法。(即先算的是什么。)

  第一个算式:先算买一套衣服用多少元。

  第二个算式:先算买5件夹克衫和5条裤子各用多少元。

  (3)猜一猜:这两个算式结果会怎样?(相等)

  (4)计算验证。

  师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。

  集体交流,指名汇报计算过程。

  (5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)

  3.探索、发现规律。

  (1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。

  同桌讨论交流,指名汇报,鼓励学生自由发表意见。

  (学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)

  (2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。

  (3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?

  指名举例,计算算式结果,得出等式,教师板书。

  师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)

  学生汇报验证的结果。 教师结合学生回答板书三个等式。

  问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。

  (4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)

  (5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。

  展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。

  表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)

  师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。

  三、应用规律,巩固练习

  1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。

  学生自己判断。集体交流时指名说说是怎么判断的?

  第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。

  问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?

  2.掌握得真不错!下面打开书看55页“想想做做”第1题。

  学生独立填写后,指名汇报。

  讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!

  3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)

  问:图上给我们提供了长方形菜地的什么信息?

  你会用两种不同的方法计算它的周长吗?

  (1)学生完成在自备本上,指名板演两种不同的方法。

  (2)集体交流,出示:(64+26)×2 64×2+26×2

  师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?

  师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。

  4.完成“想想做做”第4题。

  出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?

  比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。

  学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?

  (估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)

  这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)

  指名说计算过程,教师用课件展示简算过程。

  小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。

  5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?

  学生独立完成在自备本上,投影展示不同的算法。

  观察这个等式,你有什么想告诉大家吗?

  师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的.和去乘,甚至更多的加数呢!

  四、总结回顾

  问:今天这节课,你有什么收获?

  五、课堂作业

  完成“想想做做”第5题。

  教后反思:

  乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。

  在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。

  当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。

《乘法分配律》教学设计12

  教学内容

  义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律

  教材分析

  本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

  学情分析

  本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

  教学目标

  1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

  2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

  3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

  教学重点

  理解乘法分配律的意义。

  教学难点

  发现与归纳乘法分配律。

  教学准备

  课件习题卡

  教学过程

  一、结合实事创设情景,引入新课

  1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

  2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

  3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

  二、合作交流,探索发现新知

  1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

  板书:乘法分配律

  2、发现和归纳乘法分配律

  (1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?

  (2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

  (3)生举例并展示,共同验证并读一读式子。

  (3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的'式子?

  (4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

  3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

  三、小结

  同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

  四、分层练习,逐级达标

  1、填一填:习题卡第一题

  巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

  学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

  2、看一看:习题卡第二题

  3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

  五、回顾课程,进行总结

  同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

  板书设计

  乘法分配律

  (5+10)×24=5×24+10×24

  (a+b)×c=a×c+b×c

  25×(4+2)=25×4+25×2

  a×(b+c)=a×b+a×c

  习题卡

  填一填

  1、(32+25)×4=32×( )+25×( )

  2、(64+12)×5=( )×5+( )×5

  3、(7+6)×8=7868

  4、(43+25)×2=

  5、3×6+7×6=(+)

  看一看

  下面哪个算式是正确的?正确的画“√”,错误的画“×”

  (19+28)×56=19×56+28

  (7×3)×32=7×32+3×32

  64×64+36×64=(64+36)×64

《乘法分配律》教学设计13

  教学目标:

  1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。

  2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。

  3、渗透“从特殊到一般”的数学思想和方法。

  教学重点:指导探索乘法分配律。

  教学难点:发现并归纳乘法分配律。

  教具:课件

  教学过程:

  一、创设情境,生成问题。

  师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。

  出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?

  师:你能用几种方法解答?

  生1:(72+28)×2

  生2:72×2+28×2(板书两个算式)

  师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。

  生计算。

  师:请选择第一个算式的同学,说出你的计算结果。

  生:长方形的周长是200米。

  师:谁选择的第二个算式,结果又是多少呢?

  生:我算的结果也是200米。

  师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?

  生:可以

  板书:(72+28)×2=72×2+28×2

  出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?

  师:这道题你有能用几种方法解答?结果是多少?

  (生计算,汇报)

  生1:我列的算式是32×64+18×64,结果是6400元。

  师:有没有用不同的方法的?

  生2:我列的算式是:(32+18)×64,结果也是6400元。

  师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。

  板书:(32+18)×64=32×64+18×32

  师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?

  生:可能有规律。

  师:真的有规律吗?

  【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】

  二、探索交流,归纳规律。

  师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。

  师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?

  生:不能。

  师:那该怎么办?

  生:找更多的这样的等式。

  师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。

  (生举例验证)

  汇报:

  生1:(3+2)×5=3×2+2×5

  师:你计算过了吗?

  生1:算了,两边的结果都是30。

  师:很好,其他同学还有吗?

  生2:(30+50)×5=30×5+50×5

  生3:(24+76)×2=24×2+76×2

  ……

  师:同学们都找到了这样的式子吗?

  生:是。

  师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?

  (生思考)

  生:老师,我能。

  师:你说说看。

  生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。

  师:同学们,你听明白了吗?

  生:明白了。

  师:那你能用这个思路说说你举得例子吗?

  生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4

  ……

  师:现在我们再来思考,有没有可能像这样的式子两边不相等?

  生:不可能,两边的结果一定相等。

  【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】

  师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?

  生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。

  生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。

  生3:(A+B)×C=A×C+B×C

  生4、(a+b)×c=a×b+a×c

  生5、(○+□)×◎=○×◎+□×◎

  师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?

  生:第三个用小写字母的那一个。

  师:你为什么觉得这个好?

  生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。

  师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。

  (通过读式子,完善语言表达)

  【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】

  三、巩固应用,内化提高

  1、火眼金睛,判对错。

  56×(19+28)=56×19+28

  64×64+36×64=(64+36)×64

  32×(3×7)=32×7+32×3

  2、思维敏捷,连一连。(把结果相同的两个式子连起来)

  ①(42+25+33)×26①20×25+4×25

  ②36×15-26×15②(66+34)×66

  ③66×66+66×34③42×26+25×26+33×26

  ④38×99+38×1④(36-26)×15

  ⑤(20+4)×25⑤38×(99+1)

  师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。

  生1、我算的是(20+4)×5=20×25+4×25,结果是600。

  师:你是把两边的式子都计算了吗?

  生1:没有,我是算的右边的那个式子。

  师:你为什么没用左边的式子计算呢?

  生1:右边的那个式子计算起来简单。

  师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。

  生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。

  师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?

  生1:不是。

  生2:是,就是把它给倒过来用的。

  师:是的,这是乘法分配律的逆应用,也可以用来简化计算。

  生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。

  师:看了这个等式,你有什么想说的?

  生:我们刚才做的都是带“+”的,可是这个是“-”。

  师:看来我们的乘法分配律还有新的内涵呢。

  补充板书:(a-b)×c=a×c-b×c

  师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?

  生4:我算了,结果是2600,算的是左边的那个式子。

  师:看了它,你有没有想说的?

  生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。

  师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?

  生:能。

  3、合理选择,算一算。

  312×12+188×12

  101×87

  (53+47)×23

  【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】

  四、拓展延伸,引发思考。

  这节课我们共同来研究了乘法分配律,除法有没有分配律呢?

  板书:(a+b)÷c=a÷c+b÷c?

  同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。

  【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

  谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

  【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

  二、创设活动情境,在合作中探究

  1.交流算法,初步感知

  (课件出示例题情境图)

  谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

  (1)学生的选择方法1:买5件夹克衫和5条裤子

  一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的.什么方法)

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师巡视。

  [教师板书:(65+45)×5=65×5+45×5],让学生读一读。

  (2)学生的选择方法2:买5件短袖衫和5条裤子

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  [教师板书:(32+45)×5=32×5+45×5]

  启发:比较这两个等式,它们有什么相同的地方?

  2.深入体验,丰富感知。

  现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

  在得数相同的两个算式中间的□里画“=”

  (1)(28+16)×7□28×7+16×7

  (2)15×39+45×39□(15+45)×39

  (3)74×(20+1)□74×20+74

  (4)40×50+50×90□40×(50+90)

  (5)(125×50)×8□125×8+50×8

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

  谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

  学生举例并组织交流。(比较这些等式是否具有相同的特点)

  3.反思学习,揭示规律

  提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

  小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

  (课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

  对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

  【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

  三、巩固内化知识,在实践中运用

  谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

  1.大显身手

  出示“想想做做”第1题,让学生在书上填一填。

  师:第2题你是怎么想的?

  小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

  2.生活应用

  (“想想做做”第3题)

  小结:说说两种方法的联系。

  3.巧妙运用

  (“想想做做”第4题)(同桌一人做一组,做在练习本上)

  谈话:每组两道算式有什么联系?哪一题计算比较简便?

  现在你知道上课开始时为什么B组同学算得快吗?

  小结:乘法分配律可以使计算简便。

  4.明辨是非

  我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

  王小明这样计算:

  (3+2)×(34+36)

  =5×70

  =350(人)

  ①观察一下,你赞同王小明的算法吗?为什么?

  ②要用乘法分配律,要有什么条件?

  5.巧猜字谜

  猜一猜,等号后边是三个什么字?

  人×(1+2+3)=

  6.大胆猜想

  如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

  学生小组交流猜想。

  谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

  教师组织、引导学生总结得出:

  (a-b)×c=a×c-b×c

  小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

  【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

  四、回忆梳理知识,在反思中总结

  今天这节课,你有什么收获?

  五、布置作业:“想想做做”第5题。

《乘法分配律》教学设计14

  学习内容:

  人教版小学四年级下册第三单元乘法分配律

  学习目标:

  1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

  2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

  3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

  学习重难点

  借助乘法的意义理解乘法分配律的意义和内涵。

  配套资源

  实施资源:

  《乘法分配律》教学课件

  学习过程:

  一、情境导入,引入新课

  师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。

  请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大

  二、学习新知

  ①自主探索,独立解决问题

  请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢

  把你想到的图形画在练习本上。并试着去解决这个问题。

  ②汇报交流,明确算法

  谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

  ③全班反馈(课件动态演示)

  先来看第一种方法:

  可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)

  (设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)

  再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)

  (设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)

  同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)

  (设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)

  ②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样

  如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢

  ( +▲)×★=×★+▲×★

  (设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)

  ③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。

  验证;(100+50)×40=100×40+50×40

  结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。

  同学们,你们真厉害,你们所发现的'规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c

  三、巩固练习:

  1、请看下面这个算式,(40+8)×25

  结合刚才的长方形的面积,你想到了什么

  我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。

  2、计算59×20+41×20

  师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢

  59×20+41×20

  =(59+41)×20我们可以先求出一套衣服多少元再乘以

  =100×20它的套数,是不是计算更简单呢

  =20xx

  亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!

《乘法分配律》教学设计15

  教学目标:

  1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2.培养学生简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。

  3.使学生在数学活动中获得成功的体验,进一步增强学习数学的兴趣和自信心。

  教学过程:

  一、创设情境

  师(出示教材第54页的情景图):从图中你能获得哪些信息?“单价”一词是什么意思?

  师:买5件夹克衫和5条裤子,一共要付多少元?你们能列综合算式独立解答吗?试试看。(教师巡视,了解学生是采用什么方法解答的,并请两名用不同方法解答的学生上台板演)

  [设计意图:借助学生的生活经验,创设学生感兴趣的买衣服情境,激发学生的学习积极性和主动性。同时在学生原有知识的基础上,通过引导学生认真审题、仔细分析,自主探索解决问题的方法,自然生成了不同的解题思路和算法,为后续学习奠定了基础。]

  二、深入探索

  1.交流两种算法的实际意义。

  (1)师:“(65+45)×5”谁会读?“65+45”算的是什么?这样的钱在实际生活中叫做――(一套)你能用图在黑板上贴出来表示一套吗?(指名一人上黑板贴模型图)

  师:这样贴,能明显地看出是一套吗?谁能上来纠正?

  师:“再乘5”是什么意思?谁上来贴出另外几套衣服?

  师:想一想,这一题为什么能这样做呢?

  师(小结):如果夹克衫和裤子的件数不同,那就不能这样做。

  [设计意图:利用摆模型衣服,巧妙地帮助学生理解算式各部分的含义,促进了形象思维和抽象思维的互助互补,为学生初步感知乘法分配律建立了清晰的表象,有效地拓展了学生思维的广度和深度。同时,让学生读算式并小结出由于两种衣服数量相同才能采用这种方法,都是为后面概括规律做好铺垫。]

  (2)提问:“65×5+45×5”是什么意思?

  2.建立等式,初步感知。

  师:这两道算式算出的.都是什么?算出的结果怎样?在数学上我们可以用什么符号来连接?〔板书:(65+45)×5=65×5+45×5)〕

  师:谁能读一读这个等式?你们发现这个等式的两边有什么联系吗?

  3.类比展开,体验感悟。

  师:你们能模仿这个等式再举一个这样的例子吗?再算一算,两边的算式是不是相等?(指名举例,挑选几组等式板书)

  师:刚才大家举出了这么多类似的例子,左右两边的算式都是相等的,看来这里面一定有内在的规律。

  师(出示算式):读一读这些等式,左边的算式都有什么特点?再想一想,右边的算式与左边的算式有什么联系?(小组互相讨论一下)

  [设计意图:学生对乘法分配律本质的理解,需要经历一个主动探索、体验感悟、发现规律的过程。在教师提供素材的基础上,让学生自己举出例子,追求素材的丰富性和多样性。在模写的过程中,学生是自己验证自己发现的规律,使学生的主体地位得以充分体现。通过让学生“读一读”,有效降低了概括的难度。学生在多次观察、比较、讨论的基础上总结规律,水到渠成。]

  4.揭示规律,理解意义。

  (1)师:两个数的和同第三个数相乘,等于这两个加数分别同第三个数相乘,再把所得的乘积相加,这就是乘法分配律。(板书课题:乘法分配律)

  (2)师:“乘法”我们大家都懂,“律”就是规律,那“分配”二字作何解释呢?

  师:括号外的数既要与第一个加数相乘,又要与第二个加数相乘,这就是“分配”。

  (3)提问:如果用字母a、b、c表示这三个数,这个规律可以怎样写?[板书:(a+b)×c=a×c+b×c]

  (4)师:这既然是一个等式,左边的算式和右边的算式相等,那么反过来看,右边的算式和左边的算式也应该怎么样?也就是说,这个规律反过来看可以吗?

  (5)师(小结):通过刚才的研究,谁再来说一说,什么是乘法分配律?

  [设计意图:通过对“分配”二字的分析,让学生更加深刻地理解了乘法分配律的意义,也体现了设计的精细和独到。同时,引导学生理解乘法分配律的可逆性,为后面的练习做好了充分的准备。]

  三、巩固内化

  1.做“想想做做”第1题。

  (1)让学生独立完成前两题,并说说自己是怎样想的。(第2小题要让学生明确:在求两积之和的算式中,有相同的乘数,这个相同的乘数可以放在括号的外面)

  (2)让学生完成后两题,并要求说说是怎样填、怎样想的。

  2.做“想想做做”第2题。

  (1)让学生独立完成,并交流是怎样想的。

  (2)第3小题要提醒学生注意74×1可直接写成74,第4小题可以让学生再分别说说题中的两个式子分别和怎样的算式相等。

  3.下面每组中两道题的计算结果相同吗?哪一题的计算比较简单?

  (1)64×8+36×8 (2)12×30+12×5

  (64+36)×8 12×(30+5)

  师:看来,运用乘法分配律还能进行简便计算,这是我们下节课将要进一步研究的内容。

  [设计意图:合理地安排练习,体现了教学的扎实,并让学生初步感知了乘法分配律对于计算的简便,同时激发了学生对后续学习的兴趣。]

  四、总结提升

【《乘法分配律》教学设计】相关文章:

《乘法分配律》教学设计05-19

乘法口诀教学设计11-01

《口算乘法》教学设计03-16

《乘法估算》教学设计06-18

“乘法估算”教学设计06-21

乘法分配律说课稿(精选22篇)01-17

《7的乘法口诀》教学设计11-23

《乘法的初步认识》教学设计06-24

5的乘法口诀教学设计06-21