我要投稿 投诉建议

余弦定理优秀教学设计

时间:2023-11-18 14:00:41 教学设计 我要投稿

余弦定理优秀教学设计

  作为一位无私奉献的人民教师,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写才好呢?下面是小编为大家整理的余弦定理优秀教学设计,希望能够帮助到大家。

余弦定理优秀教学设计

余弦定理优秀教学设计1

  一、教学设计

  1、教学背景

  在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在20xx级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。

  2、教材分析

  “余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

  3、设计思路

  建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。

  为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点 ;二是如何将向量关系转化成数量关系。④由学生独立使用已证明的结论去解决中所提出的问题。

  二、教学反思

  本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

  例如,新课的.引入,我引导学生从向量的模下手思考:

  生:利用向量的模并借助向量的数量积. .

  教师:正确!由于向量 的模长,夹角已知,只需将向量 用向量 来表示即可.易知 ,接下来只要把这个向量等式数量化即可.如何实现呢?

  学生8:通过向量数量积的运算.

  通过教师的引导,学生不难发现 还可以写成 , 不共线,这是平面向量基本定理的一个运用.因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题.

  (从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦.)

  创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

  从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

  “情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

余弦定理优秀教学设计2

  一、教材分析

  《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

  余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的`正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

  二、教学目标

  知识与技能:

  1、理解并掌握余弦定理和余弦定理的推论。

  2、掌握余弦定理的推导、证明过程。

  3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

  过程与方法:

  1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

  2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

  3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

  情感态度与价值观:

  1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

  2、感受数学一般规律的美感,培养数学学习的兴趣。

  三、教学重难点

  重点:余弦定理及其推论和余弦定理的运用。

  难点:余弦定理的发现和推导过程以及多解情况的判断。

  四、教学用具

  普通教学工具、多媒体工具(以上均为命题教学的准备)

余弦定理优秀教学设计3

  一、说教材

  (一)教材地位与作用

  《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了"边"与"角"的互化,从而使"三角"与"几何"产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

  (二)教学目标

  根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:

  ⒈知识与技能:

  掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形

  ⒉过程与方法:

  在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

  ⒊情感、态度与价值观:

  培养学生的.探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;

  (三)本节课的重难点

  教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

  教学难点是:灵活运用余弦定理解决相关的实际问题。

  教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

  下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  二、说学情

  从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

  三、说教法和学法

  贯彻的指导思想是把"学习的主动权还给学生",倡导"自主、合作、探究"的学习方式。让学生自主探索学会分析问题,解决问题。

  四、说教学过程

  下面为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下五个环节展开:

  环节⒈复习引入

  由于本节课是余弦定理的第一课时,因此先领着学生回顾复习上节课所学的内容,采用提问的方式,找同学回答余弦定理的内容及公式,并且让学生回想公式推导的思路和方法,这样一来可以检验学生对所学知识的掌握情况,二来也为新课作准备。

  环节⒉应用举例

  在本环节中,我将给出两道典型例题

  △ABC的。顶点为A(6,5),B(—2,8)和C(4,1),求(精确到)。

  已知三点A(1,3),B(—2,2),C(0,—3),求△ABC各内角的大小。

  通过利用余弦定理解斜三角形的思想,来对这两道例题进行分析和讲解;本环节的目的在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。

  环节⒊练习反馈

  练习B组题,1.2.3;习题1—1A组,1.2.3

  在本环节中,我将找学生到黑板做题,期间巡视下面同学的做题情况,加以纠正和讲解;通过解决书后练习题,巩固学生当堂所学知识,同时教师也可以及时了解学生的掌握情况,以便及时调整自己的教学步调。

  环节⒋归纳小结

  在本环节中,我将采用师生共同总结—交流—完善的方式,首先让学生自己总结出余弦定理可以解决哪些类型的问题,再由师生共同完善,总结出余弦定理可以解决的两类问题:⑴已知三边,求各角;⑵已知两边和它们的夹角,求第三边和其他两个角。本环节的目的在于引导学生学会自己总结;让学生进一步体会知识的形成、发展、完善的过程。

  环节⒌课后作业

  必做题:习题1—1A组,6.7;习题1—1B组,选做题:习题1—1B组7,8,9。

  基于因材施教的原则,在根据不同层次的学生情况,把作业分为必做题和选做题,必做题要求所有学生全部完成,选做题要求学有余力的学生完成,使不同程度的学生都有所提高。本环节的目的是让学生进一步巩固和深化所学的知识,培养学生的自主探究能力。

  五、说板书

  在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。

【余弦定理优秀教学设计】相关文章:

语文优秀教学设计09-28

《船长》教学设计优秀09-28

《假如》教学设计优秀09-25

《掌声》优秀教学设计10-12

(优秀)bpmf教学设计10-11

《争吵》教学设计优秀10-13

荷花教学设计优秀10-12

《江南》优秀教学设计05-27

白杨优秀教学设计05-26