我要投稿 投诉建议

比应用教学设计

时间:2023-06-07 18:29:07 教学设计 我要投稿

比应用教学设计

  作为一位杰出的老师,时常需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的比应用教学设计,仅供参考,希望能够帮助到大家。

比应用教学设计

比应用教学设计1

  一、教学目标

  (一)知识与技能

  理解求一个数的几分之几可以用整数除法和乘法的知识来解决。

  (二)过程与方法

  通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法。

  (三)情感态度与价值观

  感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。

  二、教学重难点

  教学重点:掌握实际问题中求一个数的几分之几的方法。

  教学难点:利用图形、语言、算式三种表征的转化来解决有关分数的实际问题。

  三、教学准备

  课件等。

  四、教学过程

  (一)复习导入,揭示课题

  1.复习导入。

  学生拿出准备好的正方形纸,折出它的,并用阴影部分表示出来。

  全班展示、交流不同的折法。

  出示作业纸上的苹果图:

  要求学生将6个苹果平均分成3份,写出一份占苹果总数的几分之几,两份占苹果总数的几分之几,并将苹果总数的涂成红色,苹果总数涂成绿色。

  2.揭示课题。

  (1)这节课我们将继续学习应用分数解决生活中的一些实际问题。

  (2)板书课题。

  【设计意图】通过复习“1”是一个物体和一些物体时如何用分数表示整体与部分的关系,加深了对分数意义的理解,为学习新知作好准备。

  (二)尝试探索,学习新知

  1.阅读与理解。

  (1)课件出示例2,学生自由读题,理解题意。

  有12名学生在踢毽子,其中是女生,是男生。男女生各有多少人?

  (2)交流:说一说从题目中,你知道了什么?

  (3)你能用画示意图的方式表示出“其中是女生,是男生”吗?

  (4)展示学生画的示意图,并进行对比和交流。

  (5)请学生修改或完善自己画的图。

  2.分析与解答。

  (1)借助示意图,讨论解决问题的方案。

  ①引导学生读图思考:因为是女生,要求女生人数就要把12平均分成三份,求出一份是多少,并要求学生以同样的思路去求男生的人数。

  ②组织学生合作探究求男生人数的其他方法,并让学生选取自己认为简便的`方法。

  (2)学生独立列式解答。

  3.回顾与反思。

  (1)说一说怎样检验答案是否正确。

  预设:

  方法1:将解答的结果和画出的示意图一一对应。

  方法2:女生的人数和男生的人数相加,4+8=12,解答正确。

  ……

  (2)回顾解决问题的过程。

  先让学生回顾与总结解决问题的过程,讨论后师生共同小结。

  (3)汇报交流后,让学生书写答案,完善解题步骤。

  【设计意图】在创设现实情境后,引导学生联系分数的意义,通过自己的实际操作和观察,画出示意图,理解情境中的数量关系,探究解决问题的方法。

  (三)课堂练习,巩固新知

  1.完成练习二十二第5题。

  2.完成练习二十二第6题。

  3.完成练习二十二第9题。

  借助操作和直观图进一步巩固分数的意义。

  【设计意图】练习的设计主要是让学生应用分数的含义解决问题,通过提供直观图,方便学生在操作的基础上,形成解题思路。

  (四)全课总结,升华认识

  1.通过这节课的学习,你有哪些收获?

  2.你还有什么疑惑的地方?

比应用教学设计2

  设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。

  教学内容:六年级上册比的应用

  教学目标

  1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。

  2、能正确解答按比例分配问题。

  3、培养解决问题的能力,促进探索精神的养成。

  教学重点:掌握解答按比例分配应用题的步骤。

  教学难点:掌握解题的关键。

  教学过程:

  一、创设情境,感受价值

  1、师:同学们,大家平时放过东西吗?

  2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)

  注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?

  3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。

  注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。

  二、探究教学

  1、探究例题

  呈现例题,根据学生的建议,共同完成例1

  师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵?(2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?

  师:请同学们独立思考,独立完成(教师巡视、指导)

  (3)展示结果

  根据学生的回答板书解题方法

  第一种:60÷(2+3)=12(棵)12×3=36(棵)12×2=24(棵)

  第二种:2+3=5

  60×3/5=36(棵)60×2/5=24(棵)

  注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的.方法上,让学生充分表达自己的想法。

  2、揭示课题

  师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。

  3、思考:如何检验答案是否正确呢?

  讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?

  指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。

  三、巩固练习教材做一做。

  四、总结

  通过这节课的学习,你有什么收获?

  教学反思:

  1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。

  2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

比应用教学设计3

  一、教材分析

  1.本节教材的地位和作用

  这是由本节教学内容在高中化学教学的地位和作用决定的。本章作为从学科内容方面使学生认识化学科学的起始章,是连接初中化学与高中化学的纽带和桥梁,对于发展学生的科学素养,引导学生有效地进行高中阶段的化学学习,具有非常重要的承前启后的作用。 “承前”意味着要复习义务教育阶段化学的重要内容,“启后”意味着要在复习的基础上进一步提高和发展,从而为化学必修课程的学习,乃至整个高中阶段的化学学习奠定重要的基础。因此,本章在全书中占有特殊的地位,具有重要的功能,是整个高中化学的教学重点之一。

  对大量繁杂的事物进行合理的分类是一种科学、方便的工作方法,它在学习和研究化学当中有不可替代的作用。本章的一条基本线索就是对化学物质及其变化的分类。在高中化学的第二章编排化学反应与物质分类,使学生对物质的分类、离子反应、氧化还原反应等知识的学习既源于初中又高于初中,既有利于初、高中知识的衔接,又有利于学生能够运用科学过程和科学方法进行化学学习,立意更高些。

  2.教学内容

  本课题共包含三大内容:分类的含义、分类的方法、分类的应用。

  3.教学目标

  (1)知识与技能:能根据物质的组成和性质对物质进行分类,同时知道分类的多样性。知道交叉分类法和树状分类法,能根据需要选择并制作分类图。

  (2)过程与方法:从日常生活中学生所遇见的一些常见的分类事例入手,采用合作学习的方式,让学生将所学过的化学知识从自己熟悉的角度进行分类,将不同的知识通过某种关系联系起来,从而加深对知识的理解与迁移。通过探究活动,学习与他人合作交流,共同研究、探讨科学问题。

  (3)情感态度与价值观:初步建立物质分类的思想,体会掌握科学方法能够有效提高学习效率和效果,体验活动探究的喜悦,感受化学世界的奇妙与和谐,增强学习化学的兴趣,乐于探究物质变化的奥秘。

  4.教学重点和难点

  【教学重点分析】

  能根据物质的组成和性质对物质进行分类,建立分类思想,体会分类方法对于化学科学研究和化学学习的重要作用,体会合作探究学习方式。

  【教学难点分析】

  本课题没有难点。

  5.课时安排

  共1课时。

  二、学情分析

  1.学生起点能力分析

  教学对象是刚上高一的学生,处于初高中过渡时期,有一定的生活经验和知识基础。在初中化学的学习中,学生已掌握了一些化学物质和化学反应。初中阶段纯净物、混合物及酸、碱、盐等的学习,其实就是物质分类方法的具体应用,但在思维上,学生正从直觉型经验思维向抽象型思维过渡,学生还没有把分类形成一种方法,形成化学学习的思想。

  2.学生“生活概念”的分析

  分类法是研究和处理庞大而复杂的现实问题的最常用方法,联系实际面较宽,因此要求学生掌握更多的生活概念。学生在预习时已经按照我的引导查阅了相关知识,有了一定的生活基础。

  3.学生“认知方式”分析

  学生理解能力基本上没问题,但是处理信息能力及对信息的加工能力、整合知识、运用知识等能力较差,因此在教学中要加强对学生这些能力的培养。

  三、教学方法

  新课程理念下教师不再教教材而是用教材教,在课堂教学中教师的角色是一个设计者、组织者、指导者,学生处于主动地位,是学习的主角,以获得发展为目的。我采用建构主义理论的指导下的“知识问题化、问题情景化”的.教学模式,整个过程中教师适时适量地加以提示,帮助学生在概念的框架下逐渐构建,对知识的综合性、整体性的认识,并将它合理化、理论化,在个体学习的条件下,再进行小组协商、讨论。经过小组成员思维的磋商,在共享集体成果的基础上达到对所学知识比较全面、正确的理解,完成对所学知识的意义建构。所以本节课我采用了活动探究式教学,学生采取小组活动探究形式。

  四、学法指导

  在教学过程中,教师是主导,而学生是主体,要充分发挥学生的主体作用,教师要教学生怎样去学,使学生自己动手动脑,掌握科学的学习方法。

  1.思敢思会思

  学生在课堂上要敢于思考,积极配合教师,改变“被动”“灌输式”的学习方式,充体现“学生为主体”的理念。这样,既活跃了思维活动,又使学生体会到思考的必要与快乐。

  2.做高效合作

  在小组讨论和合作学习的过程中,激发集体荣誉感。通过学生小组实验促进学生之间的合作与竞争,培养学生的探究欲和操作能力。

  3.议学会交流

  本节教材对理论教学的要求不高,学生应参与讨论,使具有不同思维优势的学生都能够参与到课堂中来,通过表达各自观点来感受成功的喜悦。

  4.乐乐于探究

  通过实验探究体验科学探究的过程,在探究中学习,充分体现新课程理念,体现教材改革以人为本,以学生的发展为本的思想,从而培养学生终身学习的能力,使课堂真正成为学生的课堂。

  五、教学过程设计

  教学环节教学活动设计意图

  情境创设

  展示图书馆、超市图片,图书馆里的图书、超市里的商品成千上万,为什么你能快速找到所需要的图书或商品?创设问题情境,激发学生学习兴趣,引出课题。

  探究活动1

  其实在我们的日常生活、学习中自觉地不自觉地运用分类法对我们身边的各种物质、用品进行分类。

  学生分组活动:

  在1分钟内尽可能多地写出你所知道的应用分类法的例子。

  讨论分类的意义。思维的发散,让学生意识到分类法在我们的生活中非常普遍存在,明确分类的意义。引出本节课题。

  探究活动2学生分组活动:

  对下述化合物:

  NaCl、HCl、CaCl2、CuO、H2O、Fe2O3分类。

  请你说一说你是怎样分类的?在对这些物质分类过程中体会到了什么?

比应用教学设计4

  一、教学内容:

  人教版五年级上册第33页的例题12。

  二、教学目标:

  在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。

  三、教学重点:

  让学生学会能根据实际情况采用“进一法”或“去尾法”取商的近似值。

  四、教学难点:

  能够根据实际情况采用“进一法”、“去尾法”或“四舍五入法”。

  五、教具:

  课件

  六、教学过程:

  一、情景导入。

  (一)创设小强生日会的情景。

  1、老师:同学们,今天是几月几日?

  2、老师:今天,老师非常高兴,因为今天刚好是小强的生日,他邀请了我们全班一起去参加他的生日会。大家想去吗?

  3、(播放去小强家的录像课件)

  4、(播放课件)进门后:

  瞧,小强好像有点烦恼,那我们去问一下他。小强说:“我的生日会在七点开始,我的爸爸五点半才下班。他的公司离家有60千米。他下班坐的.士回家,的士每小时行驶50千米。我担心他不能准时赶到。”

  5、老师:你知道小强有什么烦恼吗?能帮助他解决吗?

  6、出示题目:

  爸爸的公司离家有60千米。他下班坐的士回家,的士每小时行驶50千米。爸爸回家大约要多少小时?(保留整数)

  学生列式解答:60÷50=1.2(小时)≈1(小时)

  7、提问:小强的生日会在七点开始,他的爸爸五点半才下班,能准时赶到吗?

  (从爸爸下班到生日会开始要1.5小时,现在爸爸从公司回到

  家大约要1小时,所以爸爸可以准时到达。)

  8、老师:刚才,我们是根据什么方法来求出商的近似值?

  (四舍五入法)

  9、导入:其实在日常生活中,我们经常会遇到利用商的近似值来

  解决问题。如果所有商的近似值都用四舍五入法求出来,你们说行吗?今天,我们继续学习一些求商的近似值的方法。

  板书课题:《近似值的实际应用》

  二、探究新知。

  1、教授教科书第33页的例题12的第(1)小题。

  (1)播放课件:(走进厨房)

  瞧,小强的妈妈王阿姨好像有点烦恼,那我们也去问一下她。小强的妈妈说“今天为了给小强庆祝生日,特意买来了许多菜及一些调味料,准备做一顿美食大餐。但是,买来的香油太大瓶,不方便煮食,想把香油装入小玻璃瓶里。但是不知道需要准备多少个玻璃瓶装?”

  老师:你知道小强的妈妈有什么烦恼吗?能帮助她解决吗?

  (2)出示题目:小强妈妈要将2.5千克的香油分装在一些玻璃瓶里,每瓶最多可盛0.4千克,需要准备几个瓶?

  (先让学生自己独立审题,分析题目再列式解答。)

  2.5÷0.4=6.25(个)

  答:需要准备6.25个瓶。

  (3)提问:①瓶子应该是一个一个的,能用小数表示吗?

  ②应该用什么数来表示?

  ③有什么方法可以保留整数?

  (4)提问:如果用“四舍五入”法保留整数,应该是多少个瓶子?

  学生在练习本上做题,然后汇报。(6.25≈6要用6个瓶子。)

  (5)提问:根据实际情况,用6个瓶子能将2.5千克的香油全部装入瓶子吗?

  同桌讨论:随机点拔汇报。

  (因为6个瓶子只能装2.4千克香油,还有0.1千克香油,需要多一个瓶子装,所以要准备7个瓶子才能装完。)

  (6)老师:像这样的题目,我们要根据实际情况,采用“进一法”来求出商的近似值。方法就是在保留整数时,无论十分位上的数是多少,一律往整数部分进一。(板书:进一法)

  (7)示范教学:2.5÷0.4=6.25(个)≈7(个)

  答:需要准备7个瓶。

  2、教授教科书第33页例题12的第(2)小题。

  (1)播放课件:(客厅)

  小强妈妈说:“为了答谢大家刚才的帮助,我特意准备了一些小礼物送给大家。这些礼物我打算在生日会玩游戏的时候送给大家。为了增加神秘感,我想把礼物包装一下。准备了一些礼盒和红丝带,但我不知道这些红丝带可以包装几个礼盒?”

  (2)出示题目:王阿姨用一根25米长的红丝带包装礼盒,每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

  (3)学生独立审题,分析题目,列式解答。

  25÷1.5=16.66(个)

  (4)提问:①礼盒数能够用小数来表示吗?

  ②如果用整数表示,根据“四舍五入法”或“进一法”保留整数,那么这些红丝带可以包装几个礼盒?

  (5)想一想:包装17个礼盒,丝带够吗?为什么?

  四人小组讨论,再向全班汇报:

  (因为1.5×16=24(米)包装16个礼盒24米剩下的1米丝带不够包一个礼盒,所以我认为只能包装16个礼盒。)

  (6)提问:你们认为能包装多少个礼盒?

  (7)老师:像这样的题目,我们要根据实际情况,采用“去尾法”来求出商的近似值。方法是在保留整数时,无论十分位数上的数是多少,一律去掉。(板书:去尾法)

  (8)示范教学:25÷1.5=16.66(个)≈16(个)

  答:这些红丝带可以包装16个。

  3、看书质疑。

  请大家打开教科书的33页,先把例12上面的内容补充完整,再想一想,有什么不明白的地方就提出来。

比应用教学设计5

  教学过程:

  一、复习:

  1.口算:

  5×7= 45÷9= 63÷7= 18÷9=

  32÷4= 56÷7= 27÷9= 6×8=

  72÷9= 8×3= 35÷7= 64÷8=

  9×4= 24÷3= 54÷9= 21÷7=

  2.把32平均分成8份,每一份是多少?

  3.56里面有几个7?

  二、探究新知

  1.出示第59页的例题4(课件)

  (1)先认真观察第一幅图的画面,用自己的话说一说画面的.内容。

  (2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的“我们”是指什么人?

  (3)把这两幅画面连起来编一道应用题。(小组合作)

  (4)小组讨论:应该如何解决这一道题?

  (5)汇报讨论结果。

  重点强调:应用题解答完后,要记住写单位名称和答语。

  (6)独立思考:怎样列综合算式?然后在练习本上完成。

  三、练习

  完成教科书第60页练习十三的第1题

  (1)学生先自己看图,口头编应用题

  (2)学生独立分析列式解答,教师鼓励学生列综合算式

  (3)全班讲评(讲评时要学生说出每一步算式的意思)

  完成教科书第60页练习十三第2题

  (1)让学生自己看图,口头编应用题,

  (2)说出这一道题目的已知条件和问题,

  (3)独立分析列式解答

  (4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?

  四、全课总结:

  通过这节课的学习,你想说些什么?

比应用教学设计6

  教学内容

  课本第143页例2;练一练第1~6题。

  教材分析

  这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。

  学情分析

  本班学生计算能力还可以,就是对应用题有一种害怕心理。

  教学目标

  1、进一步掌握圆面积公式,并能正确地计算圆面积。

  2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

  教学重点

  会熟练运用公式求圆面积。

  教学难点

  求出需要的条件,即圆的半径。

  教学准备

  作业纸、课件。

  教学过程

  一、复习。

  课件出示:

  (一)求下列各题中圆的.半径。

  (1)C=6.28分米,r=?;(2)d=30厘米,r=?

  (3)C=15.7分米,r=?;(4)d=18.84厘米,r=?

  (二)、求下列各圆的面积。

  (1)r=2分米,S=?(2)d=6米,S=?

  (3)r=10厘米,S=?(4)d=3分米,S=?

  只要求学生进行口头表述计算公式(不求计算结果)

  二、学生活动:

  要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

  运用学生事先准备的工具(细绳、直尺等)

  三、汇报交流

  小组把作业纸上交,交流心得

  姓名

  准备工具

  物体名称周长

  半径

  面积

  四、巩固练习

  练一练第1~6题。

  《作业本》p73。

  板书设计:

  圆面积公式的应用

  R=d÷2

  R=c÷π÷2

  S=πr

比应用教学设计7

  教学目标:

  1.通过分析社会各领域的具体例子,理解控制的涵义及其在生产和生活中的应用。

  2.通过学习,培养学生注意观察问题,发现问题,帮助学生了解控制的作用。

  3.激发学生了解控制,研究控制的兴趣与热情。

  4.理解控制的含义

  教学重点:

  理解控制的涵义。

  教学难点:

  理解控制的涵义。

  教学过程:

  引入:

  提出本学期的教学计划,引导学生重视本学期的教学工作,做好会考的复习准备。

  [录像]通过卓别林的《城市之光》录像片段,引入新课。

  新课教学:

  一、控制是普遍存在。

  用一些典型的、生活中的例子让学生了解控制是普遍存在,对控制有初步的认识,打破其神秘感。

  现代社会中的例子:

  生产、生活中的例子

  古代社会中的例子:

  案例1:大禹治水

  请学生讲述《大禹治水》的故事

  并提出问题,让学生思考。

  问题:大禹治水过程中,通过什么手段实现治理好水患的目的?

  通过“疏通河道,泄洪为主” 手段实现治理好水患的目的。

  案例2:木牛流马

  请学生讲述《木牛流马》的故事:“(建兴)九年,亮复出祁山,以木牛运,粮尽退军,与魏将张郃交战,射杀郃。十二年春,亮悉大众由斜谷出,以流马运。…”

  据研究:木牛和流马是汉代独轮手推车的两种改进设计,通过改进使人的负重有所减轻。木牛是一种轮子稍小一些的独轮手推车,载重大,前由人拉、后由人推,运行较慢;流马载重小,轮子稍大一些,由一人推,运行速度很快。诸葛亮所说“木牛流马”应是比喻它们运行的灵便程度和载重量的大小:木牛行动较笨而慢,像牛;流马行动敏捷而快,像马。不是说它们外形像牛像马。

  目的:帮助军队运送战略物资。

  案例3:希罗自动门

  希罗自动门的相关材料见教参P66或江苏版P107。

  希罗自动门说明了什么道理?

  道理是:利用气压和液压动力装置,实现自动开门、关门。

  总结:事物发展的结果可能是人们预先期望的,也可能与预期的目标不相符,甚至是不希望得到的。如果人们想达到某一特定的目的,就必须运用适当的手段来实现。

  那么,运用什么手段来实现呢?

  (引入控制的概念)

  二、控制的涵义

  控制是根据自己的目的,通过一定的手段使事物沿着某一确定方向发展的行为和过程。

  结合事例(用音乐喷泉的事例),重点阐明控制的对象是什么;控制要达到什么目的;采取什么控制手段。

  课本马上行动

  控制事例

  控制的对象

  控制的目的

  控制的手段

  电风扇扇叶转速快慢的控制

  电风扇

  调节速度

  换档

  音响的音量控制

  音响

  音量的调节

  旋钮

  燃气热水器温度的控制

  热水器

  调节出水口温度的'高低

  改变燃气火头的大小

  用喷雾器喷洒农药

  喷雾器

  给庄稼治病

  操作喷雾器的手柄

  [探究活动]

  请同学们说说你在生活学习中所见到的应用控制的事例。

  如:

  学校:学校的音乐铃声、多媒体教学系统、足球场草地自动喷淋系统、体育馆的自动伸缩坐椅等。

  家庭:冰箱、电饭煲、微波炉等。

  社会:交通信号灯、电子警察、电梯、程控电话交换机等

  三、控制的分类

  从控制过程中人工干预的情形来分:

  人工控制:人工纺纱、普通自来水龙头,旋转按钮打开电灯、驾驶汽车等;

  自动控制:数控机床、饮料自动装罐生产线、花房恒温控制、十字路口红绿灯的转换等

  按照执行部件的不同,控制分为:机械控制、气动控制、液压控制、电子控制等

  对于自动控制

  按控制方式分为:开环控制、闭环控制和复合控制。

  3、控制的应用

  控制的应用自古就有,并在近代得到迅速发展,在社会生产生活的各个领域都有极其广泛的应用。

  通过事例说明控制在社会生产生活的各个领域的应用。

  案例1:汽车自动化生产线。

  案例2:农业现代化设施。

  案例3:现代网络家电。

  小结与练习:

  1、控制是普遍存在。要求学生能列举事例。

  2、控制的涵义。要求学生在理解的基础上掌握好其控制的涵义。

  3、控制的应用。

比应用教学设计8

  教学内容:以“求和”为基本数量关系的两步计算应用题(书p51)

  教学目标:使学生理解以“求和”为基本数量关系的两步计算应用题的结构,能用分析法或综合法分析数量关系,会口述解题步骤,能正确地列式解答。

  教学步骤:

  一、准备引新

  1、秋天到了,让我们到果园里看看吧!果园里种满了什么树呀?如果老师告诉大家果园里有苹果树1420棵,要求苹果树和梨树一共有多少棵?(出示准备题1)你能解答吗?为什么?谁来补一个条件呢?

  2、学生补充条件,并列式计算

  梨树有1000棵 1420+1000=2420(棵)

  3、这是一道几步计算的应用题?谁能补一个条件,使它成为两步计算的应用题?

  学生口答补充:(1)梨树比苹果树少420棵

  (2)梨树比苹果树多420棵

  (3)苹果树比梨树少420棵

  (4)苹果树比梨树多420棵

  4、揭题:这样的两步计算应用题就是我们今天要学习的新课,现在我们先一起来研究第一种

  二、探究新知:

  1、研究例3

  (1) 读题,找条件和问题,师画出线段图

  (2) 根据小黑板上的思考提示,同桌互说这道题的解题思路

  (3) 学生在本子上试做这道题,只用列出分步算式,快的同学可以列出综合算式。

  (4) 指名板演算式,集体交流:指名说解题思路,1420表示什么?1000表示什么?

  (5) 综合算式怎么写 ?谁还有不同的写法?1420-420表示什么?

  2、如果补充的是“梨树比苹果树多420棵”,你怎样想?怎样算呢?根据思考提示自己思考后在本子上列式计算。

  指名板演,并说说先求什么?再求什么?

  3、小结:

  我们今天学习的两步计算应用题跟以前学习的`两步计算应用题在条件上有什么不同?只有两个条件的时候,其中一个条件需要用到几次,这两题中的哪个条件用了两次?第一次用它求什么?第二次用它求什么?但今天学习的两步计算应用题跟以前学习的两步计算应用题有一点还是相同的,那就是关键都是先求出中间问题。

  三、巩固深化

  1、p52练一练1,请学生写在书上,集体校对

  2、p52练一练2,看线段图列式计算

  3、p52练一练3判断:谁的解法对?

  小刚:240+40=280(人)

  小明:240+40=280(人)

  240+280=520(人)

  小华:240-40=200(人)

  240+200=440(人)

  小青:240+240=480(人)

  480+40=520(人)

  小组讨论,选出正确的答案,错的答案要说说错在哪里?

  4、p53练一练5

  5、p53练一练4

  四、总结

  今天你学会了什么?

比应用教学设计9

  教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

  在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

  本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

  巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

  小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

  教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

  2、培养学生分析问题和解答问题的能力。

  教学重点:找准每一步的单位“1”和数量关系。

  教学难点:掌握两类应用题的结构特点,找准数量关系。

  教学过程:

  一、复习导入

  1、口算天天练。(课件示题,指名口答)

  渗透个别算式的知识点。

  2、“看谁先找到题中的单位‘‘1‘‘。”指名口答

  3、分析分率句,口头列式解答。

  教师小结:题目中已知了分率和单位“1”的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。

  4、谈话引入新课。

  东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

  问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?

  这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

  二、新授课

  1、教学例4。

  1.)师引导学生分析题目中的数量关系。

  2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

  3.)师引导,学生确定每一步的算法。

  师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。

  4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

  2、完成“练兵场1”中的'题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

  更让老师感兴趣的是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

  3、教学例5。

  1.)出示例题,齐读题目。

  2.)师引导学生分析题目中的数量关系。

  3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

  4.)师引导,学生确定每一步的算法。

  师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。

  5.)谁还会用列方程的方法解答这道题?(指名板演)

  4、完成“练兵场1”中的题目。集体订正。

  三、巩固练习

  1、基本练习。只列式,不计算

  要求先独立做,然后集体订正。

  下面几道题和前面的稍稍有点不同,敢挑战吗?

  2、变式练习。

  3、拓展练习。

  四、小结

  今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

  五、布置作业

  练习十一的2、3、6题。

比应用教学设计10

  教学内容:

  人教版六年级数学上册第54页例2和练习十二第1~4题。

  教学目标:

  1、知识目标:掌握按比例分配应用题的结构特征以及解题方法,能正确运用按比例分配来解决生活中的实际问题。

  2、能力目标:培养学生自主探究知识、解决实际问题的能力,提高学生学数学、用数学的意识。并能提高分析问题与解决问题的能力。

  3、情感目标:让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,渗透转化的数学思想。

  教学重点:

  运用按比分配的知识解决生活中的实际问题。

  教学难点:

  提高分析问题与解决问题的能力。

  教学过程:

  一、情景导入。

  如果妈妈的菜地里的白菜长虫子了,妈妈会怎么办呢?肯定要买杀虫剂(浓缩剂)进行杀虫。那浓缩剂能不能用来杀虫呢?你们想不想解决这类有关的问题呢?根据学生的回答,那好,我们今天就一起来学习这方面的知识比的应用。

  板书:比的应用。

  二、探索新知。

  请同学们打开教科书的54页。

  出示教材54页例2

  阅读与理解:

  (1)、了解情境中的生活信息。

  (2)、已知条件:500mL是配好后的稀释液的体积,1: 4表示的是浓缩液与水的体积的比。

  分析与解答:

  (1)、稀释液:500ml 总分数:1+ 4=5

  1 : 4表示什么意思呢?

  浓缩液 : 水

  (2)、浓缩液和水的体积比是1: 4 。

  浓缩液的体积是稀释液的1/5。

  水的体积是稀释液的4/5。

  方法一:

  总体积平均分成5份。先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。

  把每份是:500(1+4)=100(mL)

  浓缩液:1001=100(mL)

  水:1004=400(mL)

  方法二:

  先求总份数,再求各部分占总量的几分之几(浓缩液占总体积的1/5;水占总体积的4/5。),最后用总量乘各部分占总数的几分之几,求出各部分量。

  浓缩液有:5001/5=100(mL)

  水有:5004/5=400(mL)

  回顾与反思:

  浓缩液体积:水的体积

  =( ):( )

  =( ):( )

  答:浓缩液有100mL,水的体积有400mL。

  三、巩固练习

  练习十二第1、2题。

  四、小结:

  1、今天我们应用比解决了一些实际问题。你有什么收获?

  2、按比的配制应用题的解题方法是: a、先算出总分数,再求每份是多少,最后分别求出浓缩液和水的体积。b、先求总份数,再求各部分占总量的几分之几,最后用总量乘各部分占总数的几分之几,求出各部分量。

  五、作业:

  练习十二第3、4题。

  六、板书设计:

  比的应用

  方法一 方法二

  总分数1+4=5

  每份数: 500(1+4)=100(mL) 浓缩液占总体积的1/5

  水占总体积的4/5

  浓缩液:1100=100(mL) 浓缩液有:5001/5=100(mL) 水:4100=400(mL ) 水有:1004/5=400(mL)

  答:浓缩液有100mL,水的体积有400mL。

  课后反思:

  按比的配制稀释液解决生产生活中的.实际问题。在这一节课中我的做法是:首先让学生在现实情境中体会按比的配制的合理性,理解什么是按比配制。按比的配制是一种分配思想,在生活、生产中是很常见的已学过的平均分,其实是按比的配制是比例的一种特例。教学中要通过解决实际生活的问题。让学生了解在生活、生产中常常要把一个数量按照数量的多少来进行配制,去感悟按比的配制存在的价值。以生活实际例子入手,让学生思考实际生活中所面临的问题,是自己生活中的问题。由此激发学生产生解决问题的兴趣,让学生主动地参与到学习中去。并在解决问题的过程中让每学生都能体会到数学的存在,其实就在他们的身边,因为数学源自于生活。其次充分展示学生的思考过程,在解决问题的过程中,让学生体会到同一问题可以从不同角度去思考,同时能得到不同的解决问题的方法,有利于学生多向思维的发展,也凸现出学生个性化的学习。

比应用教学设计11

  一、内容与解析

  (一)内容:对数函数的性质

  (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

  二、目标及解析

  (一)教学目标:

  1.掌握对数函数的性质并能简单应用

  (二)解析:

  (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

  三、问题诊断分析

  在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的'影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

  四、教学支持条件分析

  在本节课()的教学中,准备使用(),因为使用(),有利于().

  五、教学过程

  问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

  设计意图:

  师生活动(小问题):

  1.这些对数函数的解析式有什么共同特征?

  2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

  3.通过这些函数图象请从函数值的分布角度总结相关性质

  4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

  问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

  问题3.根据问题1、2填写下表

  图象特征函数性质

  a>10<a<1a>10<a<1

  向y轴正负方向无限延伸函数的值域为R+

  图象关于原点和y轴不对称非奇非偶函数

  函数图象都在y轴右侧函数的定义域为R

  函数图象都过定点(1,0)

  自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

  在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

  在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

  [设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

  例1.比较下列各组数中两个值的大小:

  (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

  (3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

  变式训练:1. 比较下列各题中两个值的大小:

  ⑴ log106 log108 ⑵ log0.56 log0.54

  ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比较正数m,n 的大小:

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若 且 ,求 的取值范围

  (2)已知 ,求 的取值范围;

  六、目标检测

  1.比较 , , 的大小:

  2.求下列各式中的x的值

  (1)

  演绎推理导学案

  2.1.2 演绎推理

  学习目标

  1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

  2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

  学习过程

  一、前准备

  复习1:归纳推理是由 到 的推理.

  类比推理是由 到 的推理.

  复习2:合情推理的结论 .

  二、新导学

  ※ 学习探究

  探究任务一:演绎推理的概念

  问题:观察下列例子有什么特点?

  (1)所有的金属都能够导电,铜是金属,所以 ;

  (2)一切奇数都不能被2整除,20xx是奇数,所以 ;

  (3)三角函数都是周期函数, 是三角函数,所以 ;

  (4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .

  新知:演绎推理是

  的推理.简言之,演绎推理是由 到 的推理.

  探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

  所有的金属都导电 铜是金属 铜能导电

  已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

  大前提 小前提 结论

  新知:“三段论”是演绎推理的一般模式:

  大前提—— ;

  小前提—— ;

  结论—— .

  新知:用集合知识说明“三段论”:

  大前提:

  小前提:

  结 论:

  试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.

  ※ 典型例题

  例1 命题:等腰三角形的两底角相等

  已知:

  求证:

  证明:

  把上面推理写成三段论形式:

  变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD

  例2求证:当a>1时,有

  动手试试:1证明函数 的值恒为正数。

  2 下面的推理形式正确吗?推理的结论正确吗?为什么?

  所有边长相等的凸多边形是正多边形,(大前提)

  菱形是所有边长都相等的凸多边形, (小前提)

  菱形是正多边形. (结 论)

  小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

  三、总结提升

  ※ 学习小结

  1. 合情推理 ;结论不一定正确.

  2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

  3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

  ※ 当堂检测(时量:5分钟 满分:10分)计分:

  1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

  结论显然是错误的,是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  4.归纳推理是由 到 的推理;

  类比推理是由 到 的推理;

  演绎推理是由 到 的推理.

  后作业

  1. 运用完全归纳推理证明:函数 的值恒为正数。

  直观图

  总 课 题空间几何体总课时第4课时

  分 课 题直观图画法分课时第4课时

  目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

  重点难点用斜二侧画法画图.

   引入新课

  1.平行投影、中心投影、斜投影、正投影的有关概念.

  2.空间图形的直观图的画法——斜二侧画法:

  规则:(1)____________________________________________________________.

  (2)____________________________________________________________.

  (3)____________________________________________________________.

  (4)____________________________________________________________.

   例题剖析

  例1 画水平放置的正三角形的直观图.

  例2 画棱长为 的正方体的直观图.

   巩固练习

  1.在下列图形中,采用中心投影(透视)画法的是__________.

  2.用斜二测画法画出下列水平放置的图形的直观图.

  3.根据下面的三视图,画出相应的空间图形的直观图.

   课堂小结

  通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

比应用教学设计12

  一、复习引入

  1.回忆列方程解决问题的一般步骤。

  学生小组内交流。

  2.在横线上写出含有字母的式子。

  (1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。

  (2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。

  学生独立思考后,指名回答。

  二、讲授新知

  1. 导入。

  教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)

  2.探究新知。

  (1)分析题旨、提出问题

  教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?

  学生认真读题,分析题意,全班交流。

  教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?

  学生独立思考,全班交流汇报。

  (2)找等量关系。

  教师:你能用一个等量关系式来表示它们之间的相等关系吗?

  小组合作,全班交流。

  多媒体出示各种等量关系式的情况:

  ①小雁塔的高度×2-22=大雁塔的高度。

  ②小雁塔的高度×2=大雁塔的高度+22。

  ③小雁塔的高度×2-大雁塔的高度=22。

  ④(大雁塔的高度+22)÷2=小雁塔的高度。

  教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。

  教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

  指名学生回答。

  (3)引导列出方程。

  教师:通过我们的'观察与交流,你觉得可以用什么方法来解决这个问题?

  学生独立思考,全班交流。

  教师:根据等量关系式,你们能列出方程吗?

  学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。

  解:设小雁塔高x米。

  2x-22=64

  (4)自主思考、解方程。

  教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?

  小组合作探究,全班交流。

  通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

  教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。

  组织交流解方程的整个过程,并完整板书。

  解:设小雁塔高 x米。

  2x-22=64

  2x-22+22=64+22

  2x=86

  x=43

  (5)引导检验、培养习惯。

  教师:你打算怎样对这道题进行检验?

  学生各自检验,指名汇报检验方法。

  教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。

  3.内化理解、触类旁通。

  教师:根据等量关系还可以怎样列方程解决?

  学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。

  集体交流,然后说说怎样来解自己的方程。

  4.对比归纳、掌握方法。

  教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?

  小组交流,明确:顺着题意来列方程比较简便。

  三、巩固应用

  (一)预习答疑

  这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。

  (二)教材习题

  1.教材第10页“练一练”。

  引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)

  2. 教材第11页练习二第5题。

  独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )

  3. 教材第11页练习二第6题。

  学生直接填空,全班交流。(3x+15 4x-80)

  4.教材第11页练习二第7题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)

  5.教材第11页练习二。第8题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)

  (三)课堂作业

  完成第三部分习题设计“课堂作业”第1、3题。

  学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。

  四、总结提升

  1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

  2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?

  五、布置作业

  完成第三部分习题设计“课后作业”第5、6、7题。

  设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。

  设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。

  设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。

  设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。

  设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。

  设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。

比应用教学设计13

  教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。

  教学目的:

  1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。

  2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。

  教学重点:进一步掌握分数应用题的结构特征和解题规律。

  教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。

  教具准备:投影仪

  教学过程:

  一、梳理知识,使知识建成网状结构

  1、口答:(打开投影仪)

  (1)分数应用题的基本类型有几种?哪三种?

  (2)解答这三种分数应用题的关键是什么?

  (找准单位"1",弄清单位"1"的量、分率及分率对应量。)

  (3)解答这三类分数应用题的基本关系式是什么?

  2、(l)简单的分数应用题

  ①某班有男生40人,女生人数是男生1/4,女生有多少人?

  ②某班有女生10人,男生40人,女生人数是男生人数的几分之几?

  ③某班有女生10人,是男生人数的士,男生有多少人?

  (2)稍复杂的分数应用题

  ①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?

  ②某班有男生40人,女生30人,男生人数比女生人数多几分之几?

  ③某班有女生30人,比男生人数少言,男生有多少人?

  以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:

  ①求一个数的几分之几是多少?

  单位"1"的量×分率=分率对应量

  ②求一个数是另一个数的几分之几是多少?

  分率对应量÷单位"1"的量=分率

  ③已知一个数的几分之几是多少,求这个数?

  分率对应量÷分率=单位"1"的量

  而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。

  [评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的'思维条理化,进一步理清了学生的解题思路。]

  二、抓住结构特征,应用所学知识,提高能力。

  (1)某用户三月份用电100度,四月份比三月份节约用电1/10,?

  ①100×1/10?

  ②100×(1—1/10)?

  ③100×(1—1/10+1)?

  (2)某用户四月份比三月份节约用电100度,正好节约了1/10,

  ①100÷1/10?

  ②100÷1/10×(1—1/10)?

  ③100÷1/10×2—100?

  (3)某用户四月份用电90度,比三月份节约用电1/10,?

  ①90÷(1—1/10)?

  ②90÷(1—1/10)×1/10______________?

  ③90÷(1—1/10)+90________________?

  (学生口述,集体订正,比较异同)

  2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)

  __________运来的桔子比苹果少,___________?

  (1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?

  (2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?

  (3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?

  (4)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果比桔子多多少吨?

  (5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?

  (6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?

  (7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?

  (9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?

  (12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?

  (13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?

  (14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

  (15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?

  (16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?

  (18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?

  (19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

  (20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?

  以上各题采用先让学生试做,然后老师归纳总结解题思路:

  ①先找出单位"1"的量

  ②谁和单位"1"的量相比

  ③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)

  ④确定算法(或列式)的依据是什么?

  3、发展题(用幻灯逐题打出)

  (1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?

  (2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?

  教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。

  通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。

  三、课堂小结,再次构成学生的认知结构。

  师问:这节课你有哪些收获?

  甲生答:这节课我们复习了分数应用题的基本类型。

  乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。

  丙生答:根据分数应用题的基本关系式确定算法。

  丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。

比应用教学设计14

  一、教学目标

  知识技能:

  1.通过相关数据在excel中的建立数据表格,并能创建相应的图表。

  2.通过对excel图表的学习,理解并掌握图表(柱形图、折线图和饼图)类型的选择。

  过程方法:

  1.通过小组合作学习、交流讨论等方法,掌握表格的建立、图表的创建。

  2.通过在项目活动中的学习,学会用所学的知识来解决日常生活中的实际问题。

  情感态度价值观:

  通过对excel的学习使学生养成善于发现问题、积极思考、并乐于与同伴交流等良好品质。

  二、教学重、难点

  教学重点:

  1.利用图表向导建立图表的操作。

  2.图表类型的选择(柱形图、折线图和饼图)。

  3.图表源数据的选择。

  教学难点:图表类型的选择与图表源数据的选择。

  教学关键:对图表所要表现内容的理解。

  三、教学方法

  教师引导、任务驱动下的学生自主、探究、交流学习。

  四、教学过程

  1.回顾对比引入

  回顾ppt中图表的插入方法以及图表的作用,强调excel中首先建立数据表格,其次借助图表来更直观地展示。

  此外,教师演示下载并交代本节课任务。

  2.操作交流领悟

  类比ppt中插入图表的方法,在阅读书本的基础上,在excel中绘制如下数据的图表,要求:绘制的图表位置在工作表任务1中,操作试回答以下问题:

  问题a:运用图表向导创建图表共有几步骤?

  问题b:图表向导的几个步骤分别完成哪些工作?

  问题c:在创建图表的步骤中,可跳过不做的步骤有哪些?

  问题d:倘若当前图表类型选择有误,怎样修改?

  使用数据为:

  世界大河水量径流模数比较

  河流名称

  尼罗河

  长江

  亚马逊河

  密西西比河

  刚果河

  径流模数

  0.79

  17.6

  17

  5.8

  10.6

  达成目标:基本掌握创建图表的四个步骤:图表类型、源数据、选项和图表位置以及各步骤的功能作用及注意事项。

  3.设问探究巩固

  a、要求根据给定表格数据,自行选择图表类型绘制图表,并说明理由。

  20xx年世界人口(单位:亿)

  人口

  亚洲

  52.68

  北美

  3.92

  欧洲

  8.28

  拉美

  8.09

  非洲

  17.68

  教师引导提问:你选择了什么图表类型?这种类型的图表所要反映的内容是什么?

  学生回答问题归纳得出选择图表类型的原则:为了对比每个项目的.具体数目时可选择柱形图;为了清楚地反映事物的变化情况可选择折线图;而饼图能清楚地表示出各部分在总体中所占的百分比。

  根据以上结论,将上题补充完整,制作柱形图和饼图。

  b、绘制世界人口随时间变化图

  世界人口变化情况(单位:亿)

  年份

  人口

  1957

  30

  1974

  40

  1987

  50

  1999

  60

  20xx

  80

  20xx

  90

  此处为学生常犯错误之所在,学生习惯性全选数据,而忽略有效数据的选择。图表中真正有效数据需要分析得出,此处由教师重点展开讲解(数据选择方面问题,系列选项卡中的“分类(x)轴标志”)。

  达成目标:理解并掌握基本图表类型的选择以及图表数据源的选择(步骤1和步骤2)。

  4.练习评价互助

  利用教师给定的数据进行图表的创建。

  此部分内容具体图表类型不指定,由学生根据需求自行选择并制作。

  某地一天气温变化

  时间

  2

  4

  6

  8

  10

  12

  14

  16

  18

  20

  22

  温度/℃

  25

  24

  23

  25

  26.5

  29

  30.5

  33

  30.5

  28

  26

  25.5

  某地多年月平均降水量

  月份

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

  11

  12

  降水量/毫米

  10

  5

  22

  47

  71

  81

  135

  169

  112

  57

  24

  12

  地球陆地面积分布统计

  大洋州

  欧洲

  南极洲

  南美洲

  北美洲

  非洲

  亚洲

  6%

  7.10%

  9.30%

  12%

  16.10%

  20.20%

  29.30%

  操作完成后提交作业至电子档案袋平台,并借助平台开展同学间互评,推荐优秀作业,展示交流。

  互评尺度:任务1(10分)+任务2(2x10分+10分)+任务3(20x3分)=100分

  图表类型错一处扣10分,图表源数据选择错一处扣10分,少做漏做不得分。

  此外,可根据同学情况酌情加分,并说明加分理由。

  达成目标:当堂开展学生检测,反馈课堂教学情况。

  五、教学反思

  1.在本课的教学设计中,以任务驱动为手段,激发学生的兴趣,引导学生自主学习,提高学生的操作技能,培养他们获得知识、应用知识的能力,培养学生的审美能力,提高信息素养。

  2.学生通过学习能掌握建立和编辑图表,达到了教学的预期目标。

比应用教学设计15

  教学目标:

  1、在自主探索中探究出两步除法应用题的数量关系,并能用两步除法解决相关的生活问题。

  2、通过独立思考,小组合作活动,能从多个角度解决同一个问题,提高解决问题的能力,发展思维。

  3、培养学生主动探索的学习热情,感受数学与生活的密切联系。教学重点:使学生理解连除应用题的数量关系,学会用两种方法解答。

  教学难点:

  1、用两种解答方法解答应用题。

  2、理解数量关系,找出解决问题的间接信息,灵活解决问题。教具准备:口算练习卡片、投影仪等。

  教学过程

  一、复习。

  1、口算:13×690÷380÷5÷340÷4÷548÷(2×4)

  2、投影出示复习题:三年级女生要进行集体舞表演,她们平均分成2队,每队分成3组,每组10人,一共有多少人?

  3、改变复习题的一个条件和问题后,出示例4三年级女生要进行集体舞表演,老师将参加表演的60人平均成2队,每队平均分成3组,每组有多少人?

  4、引出课题(板书:连除应用题)

  二、探究新知,形成策略

  1、探究例4的解答方法

  (1)读例题,学习两种分析、解答应用题的方法.

  (2)思考讨论

  2、结合学生讨论,教学两种解法,并列出综合算式.

  3、观察比较,归纳概括.教师提问:观察两种解法在思路上有什么异同?

  4、引发思考,巩固解题方法。三、巩固提升。

  1、独立完成教材第53页做一做。

  2、判断题。

  四、全课小结。这节课我们学习的是什么知识?

  教学反思:

  在课堂中我注重学生解题策略的讲解,用线段帮助学生理解题意,让学生用不同的说的方式展示自己,如个别说,小组讨论说,跟着同学一起说,给了学生充足的时间与空间,让学生通过说展现思维过程,表达自己的.想法,学生每列出一个算式,就要求说出求的是什么,培养学生数学语言的完整性,并让不同层次的学生学到自己喜欢的思维方式。

【比应用教学设计】相关文章:

《比的应用》教学设计01-15

语文多媒体教学的应用与反思论文11-08

《密度》教学设计05-25

乘车教学设计05-25

关于教学设计05-25

《检阅》教学设计05-30

《雷雨》教学设计06-01

《泉城》教学设计05-31

《小池》教学设计05-31

透镜教学设计05-31