我要投稿 投诉建议

数轴教学设计

时间:2023-12-16 10:40:07 秀雯 教学设计 我要投稿
  • 相关推荐

数轴教学设计(通用10篇)

  作为一名为他人授业解惑的教育工作者,就不得不需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要怎么写呢?以下是小编整理的数轴教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

数轴教学设计(通用10篇)

  数轴教学设计 1

  一、教学目标

  1、知识与能力:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

  2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

  3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;通过分组动手操作实践,体会数学充满探索性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

  二、教学重点:

  数轴和相反数的概念及用数轴上的点表示有理数

  三、教学难点:

  数轴的概念和相反数反映在数轴上的性质

  四、教学设计

  (一)创设情境,引出课题

  教师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:

  (1)温度计上的刻度是怎样表示温度的?

  (2)把温度计横放(零上温度向右),你觉得它像什么?

  (3)你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

  (借助于温度计,用类比的数学思想方法,使学生易于接受数轴。感受到数学是真实的、亲切的。这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。)

  (二)合作讨论,探究新知

  1、动手操作:师生一起画一条数轴。

  [讲清数轴的画法:一画(直线);二定(定原定);三选(选正方向);四统一(单位长度要统一)。]

  2、观察数轴有什么特征?(让学生讨论)

  (如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。)

  3、考考你:下面图形是数轴的是( )

  (A) (B)

  (C) (D)

  (通过判断,加深对数轴概念的理解,掌握正确的画法。)

  4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?

  (引导学生独立思考得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。)

  (通过设置问题串,使学生了解知识的产生过程,培养学生分析、归纳的能力,实现从实践到理论的提高。)

  (三)解释应用,体验成功

  1、例题教学

  例1 指出数轴上A、B、C、D各点表示什么数?

  (合作交流,获取正确答案)

  (指出数轴上已知点所表示的数,是由“形”到“数”的过程。)

  例2画出数轴,并用数轴上的点表示下列各数:

  4,-5,0,5,-4,-

  (动手操作,体验数学活动充满探索。)

  (把给定的数用数轴上的点表示,是“数”到“形”的思维过程。)

  归纳:例1、例2,从两个侧面体现了数形结合的意思,是教学中要渗透的数学思想方法。

  2.观察例2中画好的数轴,4与-4有什么相同与不同之处,与-,-5与5呢?像这样关系的两个数你还能找出多少对?

  合作讨论:相同点是:它们在数轴上的'位置到原点的距离都是两个长度单位;不同点是:它们位居原点的两边。这样的数对可找出无数对,如:与-,5与-5等。

  教师引导学生得出:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数是互为相反数,特别地,0的相反数是0。通常在一个数的前面添上“-”号,或改变符号,用这个新数表示原数的相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  3、考考你:

  (1)下面两个数是互为相反数的是( )

  A、-与0.2 B、与-0.333

  C、-2.25与2 D、π与3.14

  (2)写出三对非零相反数

  (四)拓展创新,巩固概念

  (1)问题:数轴上的两个点,右边的点表示的数与左边的点表示的数有怎样的大小关系?你能举例说明吗?

  (分组讨论、合作交流、获得数学的猜想。)

  (猜想温度计上显示的温度,上边的温度总比下边的温度高,如:-5℃比-7℃温度高,所以右边的点表示的数总比左边的点表示的数大,即:-5>-7。)

  (2)在数轴上距原点3个单位长度的点表示什么数?它们有什么关系?距原点5个单位呢?a个单位呢?(a>0)

  (学生回答,并相互补充,培养学生发散思维的能力;知道若a为有理数,则它的相反数为-a。)

  (3)书上12页练习1与练习2

  (五)课堂小结

  通过本节课的学习,你有什么收获?

  (数轴和相反数的概念,把有理数表示在数轴上,

  (六)课外延伸(有兴趣的同学完成)

  1、填一填:

  右面是一个正方体纸盒的展开图,请把-10、7、10、-2、-7、2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两上数互为相反数。

  (课外同学之间讨论,尝试不同的填法,并用模型检验结果的正确性,本题要求学生有一定的空间想象力,将“数”和“形”有关内容有机地结合起来。)

  2、想一想:某人在A地向东走10米,然后折回向西走3米,又折回向东走6米,问此人在A地哪个方向?距离为多少?答:此人在A地正东方向,距离A地13米。

  (可借助于数轴求解,把实际问题转化为数学模型,以A为原点,向东为正建立模型,实际行走的路线为A→B→C→D。)

  向东走10米

  -2 -1 0 1 2

  1 2 3

  -2 -1 0 1 2

  -3-2 -1 0 1 2 3

  -2 -1 0 1 2

  A D C B

  · · · ·

  -2 0 2 4 6 8 10 12

  A C B D

  ? ? ? ?

  数轴教学设计 2

  一、教材分析

  《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、教学目标

  知识技能:

  ①了解数轴的概念,学会如何画数轴;

  ②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

  过程与方法:

  ①从直观认识到理性认识,从而建立数轴概念。

  ②通过数轴概念的学习,初步体会对应的思想,数形结合的`思想方法。

  情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

  三、重难点

  重点:正确理解数轴的概念和有理数在数轴上的表示方法。

  难点:建立有理数与数轴上的点的对应关系(数与形的结合)。

  四、教学教法

  教法:启发式教学法和师生互动式教学模式。

  学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

  五、教学过程

  (一)创设情景引入课题

  1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

  ①零上5℃怎样表示?

  ②零下10℃怎样表示?

  ③0℃怎样表示?

  2、画情境图,体会方向与距离

  在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  (二)得出定义揭示内涵

  1、提问,到底什么是数轴?如何画数轴?

  2、丰富数轴的内涵:分数和小数在数上怎么表示?

  3、观察数轴上的有理数排列的大小?

  4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

  表示3的点在原点的___边,距原点的距离是______。

  ①位于数轴左(下)边的数总比右(上)边的数小。

  ②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

  (三)手脑并用深入理解

  1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

  2、画数轴并表示出下列有理数,—2,2,0,

  3、指出数轴上A、B、C、D、E点分别表示什么数?

  (四)归纳总结强化思想

  1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

  (五)分层作业强化思想

  1、教材第12页第

  1、2题。

  2、补充练习。

  ⑴画一条数轴,并表示出如下各点:±,±,±。

  ⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出—5和+5之间的所有整数。

  3、思考练习

  在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

  数轴教学设计 3

  一、教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法。

  二、教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

  难点:正确理解有理数与数轴上点的对应关系。

  三、课堂教学过程设计

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

  (二)探索新知,讲授新课

  1.数轴的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃)。

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

  根据老师画图的`步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。

  教师根据学生回答给予肯定或否定,纠正后板书。

  2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

  向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据。

  学生活动:同桌之间、前后桌之间讨论,使学生从直观认识上升到理性认识。

  3.尝试反馈,巩固练习

  请大家回答下列问题:

  (出示投影2)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  学生活动:学生思考,不准讨论,想好后举手回答。

  让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。

  4.有理数与数轴上点的关系

  通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。

  例1画一条数轴,并画出表示下列各数的点:

  1,5,0,-2。5,

  学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。

  例2指出数轴上a、b、c、d、e各点分别表示什么数?

  先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表。

  数轴教学设计 4

  教学目的:

  理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

  重点、难点

  1、重点:弄清应用题题意列出方程。

  2、难点:弄清应用题题意列出方程。

  教学过程

  一、复习

  1、什么叫一元一次方程?

  2、解一元一次方程的理论根据是什么?

  二、新授。

  例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

  分析:等量关系;A盘现有盐=B盘现有盐

  检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

  例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

  1.题目中有哪些已知量?

  (1)参加搬砖的初一同学和其他年级同学共65名。

  (2)初一同学每人搬6块,其他年级同学每人搬8块。

  (3)初一和其他年级同学一共搬了1400块。

  2.求什么?初一同学有多少人参加搬砖?

  3.等量关系是什么?

  初一同学搬砖的块数十其他年级同学的搬砖数=1400

  三、巩固练习

  教科书第12页练习1、2、3

  四、小结

  列方程解应用题的'关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

  五、作业

  数轴教学设计 5

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的'相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-2000。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

  数轴教学设计 6

  一、教学目标

  通过与温度计的类比认识数轴,会用数轴上的点表示有理数、

  二、教法设计

  比较法、讨论法、观察法、投影演示法、

  三、教学重点和难点

  会用数轴上的点表示有理数,把有理数用数轴上的点表示、

  四、师生互动活动设计

  创设情景,观察猜想,举例论证

  五、教学思路

  (一)、创设情景、引导学生通过观察温度计、体会用直线上的点来示有理数的方法,导入课题

  1、展示不同读数的温度计,先让学生读出各个温度计的数后,提问:你能指用直线上的点来表示有理数吗?

  同学讨论、交流,最后教师边板书边讲述:画一条水平直线,在直线上取一点O(叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,得到数轴、(导入新课)

  2、数轴与温度计作类比,让学生亲自操作实践、

  (真像一个平放的温度计)

  +3用数轴上位于原点右边3个单位的点表示,-4用数轴上位于原点左边4个单位的`点表示,原点右边个单位的点表示( ),原点左边1.5个单位的点表示(-1.5)、

  (二)、投影出示例1、例2,让学生独立完成,教师总结

  例1?指出数轴上已知点所表示的数是由“形”到“数”的思维过程、例1让学生口答。

  例2?把给定的数用数轴上的点表示,是由“数”到“形”的思维过程、例2让学生动手填在数轴上。

  (三)、想一想,促进学生之间合作在流

  1、投影片上打出问题,小组讨论,发展学生的思维空间。

  由小组代表发言,不同意见由其他小组代表阐述,给予同学肯定、鼓励。

  2、师生共同总结数轴的概念,以及各类数在数轴的位置关系。

  六、小结

  同学们你们学会了什么呢?

  1、认识了数轴。

  2、用数标出数轴上的点,并会用数轴上的点表示数。

  七、作业布置

  课本习题2.2中l-4题

  自我评价

  本教案的设计有以下特点:

  能根据教材编写思路,自制教具创造性使用新教材中的问题情景,把教材中不动的问题情景转化为学生互动的问题情景,使学生在互动中去感受数轴。

  有关的一些知识,都是在教师的引导下,经过学生充分的思考、讨论,并结合大量特例,由学生自己归纳、总结发现的。

  教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展,真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者。

  数轴教学设计 7

  【教学重点与难点】

  教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

  教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思 方法是本节课的教学难点。

  【教学目标】

  1、 理解数轴的概念,会画数轴;

  2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

  3、 通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

  【教材处理】

  本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

  【教学方法】

  通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

  【教学过程】

  一、问题解决 引入实例

  (设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

  问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

  学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

  二、提出问题感受特征

  问题2: 怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

  规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的点表示出来。

  问题3:你还能举出生活中用直线上的点表示数的例子吗?

  学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……。

  可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

  (教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体

  方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

  三、适时命名 学生定义

  1.引入数轴概念

  (设计说明:由直观认识到理性认识,引导学生建立数轴概念)

  通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

  一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

  2、揭示数轴内涵

  (设计说明:让学生在动手操作中探索数轴的三要素)

  四、提炼总结 规范定义

  问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

  可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

  (1) 数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

  (2) 数轴三要素

  ① 原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

  ② 正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

  ③ 单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

  五、定义辨析 练习巩固

  (设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,

  形成初步技能。)

  1、下列图形哪些是数轴,哪些不是,为什么?

  2、(1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;

  (2)画一条数轴,并表示出如下各点:1000,5000,-2000;

  (3)在数轴上标出到原点的举例小于3的整数;

  (4)在数轴上标出-5和+5之间的'所有整数。

  (教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

  六、反思总结 情意发展

  (设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。) 问题1:什么是数轴?

  问题2:如何画数轴?

  问题3:如何在数轴上表示有理数?

  (教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

  七、布置作业

  1、 课本18页习题1.2第2题

  2、指出下面数轴上A、B、C、D各点所表示的数

  3、数轴上的点p与表示有理数3的点A的距离是2

  (1)试确定点p表示的有理数;

  (2)将点A向右移2个单位到点B,点B表示的有理数是多少?

  (3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

  设计说明:

  数轴是数形转化、数形结合的重要媒介,也是学生难以理解的一个难点,对学生来说,将数和形结合在一起是非常抽象的,因此,教学过程从贴近学生的实际出发,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现了从感性认识到理性认识到抽象概括地认识规律。

  教学过程突出了情景—抽象---概括的主线,体现了从特殊到一般研究问题的方法,注意从学生已有的知识经验出发,充分发挥学生的主体意识,让学生主动参与到学习活动之中,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的精神。

  数轴教学设计 8

  一、回顾复习旧知

  1、读数,指出哪些是正数,哪些是负数?

  -62.9 +0.16 -4/5 +7/120 +305 -88

  二、新课讲授

  1、教学例3。

  (1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?

  组织学生在小组中议一议,然后汇报。

  (2)教师结合学生的汇报,用课件出示数轴,在相应点的`下方标出对应的数。

  (3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (4)教师总结:

  我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

  2、观察数轴,比较数的大小。

  引导学生观察数轴。

  ①从0起往右依次是?从0起往左依次是?你发现什么规律?

  ②在数轴上分别找到

  1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  师及时小结:

  数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

  三、巩固练习

  1、完成教材第5页的“做一做”。

  学生独立练习,指名汇报。

  2、完成教材第6页练习一的第4、5题。

  组织学生独立完成,并在小组中相互交流、检查。

  四、课堂小结

  通过这节课的学习,你有什么收获?

  数轴教学设计 9

  教学目标

  1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学过程

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的`名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1、你能举出一些在现实生活中用直线表示数的实际例子吗?

  2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4、每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1、数轴的三个要素;

  2、数轴的作以及数与点的转化方法。

  本课作业

  1、必做题:教科书第18页习题1.2第2题

  2、选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  数轴教学设计 10

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1.学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2.联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1.马路用什么几何图形代表?(直线)

  2.文中相关地点用什么代表?(直线上的点)

  3.学校大门起什么作用?(基准点、参照物)

  4.你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2.数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1.什么样的直线叫数轴?它具备什么条件。

  2.如何画数轴?

  3.根据上述实例的经验,“原点”起什么作用?

  4.你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1.判断下列图形是否是数轴。

  2.口答:数轴上各点表示的数。

  3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的.点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1.什么是数轴?

  2.数轴的“三要素”各指什么?

  3.数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  五、板书

  1.数轴的定义。

  2.数轴的三要素(图)。

  3.数轴的画法。

  4.性质。

【数轴教学设计】相关文章:

数轴说课稿02-05

数轴说课稿集合01-09

数轴说课稿优秀03-02

经典教学设计06-22

教学设计07-13

学与问教学设计搭配的学问教学设计11-19

妈妈爱的数轴线五年级作文05-02

语文的教学设计12-06

《长城》教学设计12-06