我要投稿 投诉建议

《相遇问题》教学设计

时间:2023-03-19 03:08:22 教学设计 我要投稿

《相遇问题》教学设计(精选13篇)

  作为一名专为他人授业解惑的人民教师,总归要编写教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的《相遇问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《相遇问题》教学设计(精选13篇)

  《相遇问题》教学设计 篇1

  教学目标

  1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.

  2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.

  3.渗透运动和时间变化的辩证关系.

  教学重点

  掌握求路程的相遇问题的解题方法.

  教学难点

  理解相遇问题中时间和路程的特点.

  教学过程

  一、以旧引新

  (一)口答列式,并说明理由.

  1.一辆汽车每小时行60千米,4小时行多少千米?

  2.一辆汽车4小时行了240千米,每小时行多少千米?

  3.一辆汽车每小时行60千米,行驶240千米需要几小时?

  教师板书:速度×时间=路程

  (二)创设情境

  1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”

  2.小组集体讨论

  (1)张华送到李诚家;

  (2)李诚来张华家取走;

  (3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.

  3.认识相遇问题

  (1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?

  (同时,从两地,相对而行)

  (2)两个人之间的距离有什么变化?(越来越近,最后变为零)

  教师指出:当两个人的距离为零时,称为“相遇”

  具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”

  板书课题:相遇问题

  (三)出示准备题:

  张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.

  根据已知条件填写下表

  走的时间

  张华走的路程

  李诚走的路程70米

  两人所走路程的和

  现在两人的距离

  1分

  60米

  70米

  2分

  3分

  思考:

  1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)

  2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)

  二、教学新课

  (一)教学例3

  小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?

  1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.

  请同学解释这两个词的含义.

  2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)

  3.由学生尝试解答例3

  4.结合线段图订正答案.

  方法一:65×4+70×4 方法二:(65+70)×4

  =260+280 =135×4

  =540(米) =540(米)

  速度和×相遇时间=路程

  5.比较

  (1)两种算法哪一种比较简便?

  (2)两种算法之间有什么联系?

  三、巩固练习

  (一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?

  (二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?

  讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?

  板书:出发地点:两地

  出发时间:同时

  运动方向:相向(相对、对面)

  运动结果:相遇

  (三)两只轮船同时从上海和武汉相对开出.从武汉出发的`船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?

  (四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?

  1.由学生用手势表述题意.

  2.比较:与前面题目相比,有什么不同?又有什么共同之处?

  (五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.

  甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?

  1.由学生用手势语言向同组同学介绍题意.

  2.由学生独立解答

  3.出示四种不同解法,请同学小组讨论并做出判断.

  方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2

  方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)

  四、课堂小结

  通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?

  (相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动……)

  今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?

  怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?

  五、课后作业

  (一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?

  (二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经六、板书设计

  过3小时,两车相距多少千米?

  《相遇问题》教学设计 篇2

  【学习目标】

  知识与技能:学会分析相遇问题的数量关系,掌握相遇问题求路程的解题方法。

  过程与方法:模拟相遇问题中两个物体的运动过程,亲身体验知识形成的过程。

  【学习重点】

  掌握相遇问题求路程的解题方法。

  【学习难点】

  分析相遇问题的数量关系,理解不同的方法解答。

  【学习过程】

  一、知识铺垫

  小萍每分钟走65米,从家出发 6分钟可以到栈桥。小萍家到栈桥有多少米?

  思考:用什么方法计算?根据什么 ?

  导:今天,我们将在这个知识的基础上研究一种新的数学问题。(揭题:相遇问题)

  二、探索新知

  1、初步感知,理解题意

  小萍和小明同时从家去栈桥,小萍每分钟走65米,小明每分钟走75米,经过6分钟两人在栈桥相遇。他们两家相距多少米?

  思考:(1)从题中知道了什么信息?

  (2)两道题有什么不同?

  2、学生表演,加深理解

  同时、相遇、相距(学生上台表演)

  思考:小萍走了( )分钟?小明走了( )分钟?他们同时走了( )分钟?也就是从开始到相遇,经过了( )分钟?

  (生汇报师补充完成线段图)

  列式计算:

  方法一: 方法二:

  —————————— ——————————

  —————————— ——————————

  —————————— ——————————

  答: ——————————。 答:——————————。

  3、小组交流,探索方法

  要求:①说说你是怎样列式的;

  ②说清楚算式里每一步算出的是什么;

  ③记住用手指指着你列的.式子说。

  4、集体交流

  师小结两种方法。

  5、看书质疑,提高认识

  师:这样的题目,我们称为相遇问题,看书本P63,想一想有没有不明白的地方?

  质疑:(65+75)×6中没有小括号,行吗?

  三、巩固练习

  1、小方和小丽同时从家出发,经过8分钟两人在少年宫相遇,小方每分钟走70米,小丽每分钟走60米。她们两家相距多少米?

  2、两列火车分别从甲乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲乙两地间的路程是多少千米?

  3、拓展练习

  甲、乙两车同时从同一车站向相反方向开出,甲车每小时行70千米,乙车每小时行55千米,开出3小时,两车相距多少千米?

  五、课堂总结

  通过这节课的学习,你有什么收获?

  课堂检测

  1、两列火车分别从两站同时相向开出,甲车每小时行驶60千米,乙车每小时行驶70千米,经过5小时在途中相遇,两站相距多少千米?

  2、张丽和李云同时从学校向相反方向回家,张丽每分钟走80米,李云每分钟走60米,经过10分钟,她们同时到家,她们两家相距多少米?

  3、甲、乙两艘轮船同时从甲、乙两地相对开出,甲船每小时行驶25千米,乙船每小时行驶15千米,经过10小时相遇,甲、乙两地相距多少千米?

  4、小青和小红同时从自己家走向学校,小青每分钟走60米,小红每分钟走65米,两人走了2分钟时还相距125米,她们两家相距多少米?

  《相遇问题》教学设计 篇3

  教学内容:课本应用题例7及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的`能力。

  教学重点:“求其中的一个速度问题”的特征和解题方法。

  教学难点:“求其中的一个速度问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  今天小红打的去离家3600米的少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?

  学生口答列式:3600/6=600(米)。

  复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:速度=路程/时间)

  一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?

  二、揭示特征,化解难点

  读读 议议

  出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?

  提问:你知道相遇的时候,小明行了多少米?小红行了多少米?

  如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?

  460/5=92(米)

  三、解答例题,理清思路

  1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

  ①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。

  ②评讲板演,理清解题思路,概括两种方法。

  解法一:

  分步计算:两人每分共行多少米?

  460/4=115(米)

  小红每分种走了多少米?

  115-60=55米

  综合算式:460/4-60

  =115-60

  =55(米)

  解法二:

  分步计算:相遇时小明行多少米?

  60*4=240米

  相遇时小红行多少米?

  460-240=220米

  小红每分行多少米?

  220/4=55米

  综合算式:(460-40*4)/4

  =220/4

  =55米

  2、质疑小结,揭示课题。

  ①想一想,这两种解法有什么联系?

  ②概括“求其中的一个速度”的特征和解题方法。

  ③揭示课题。

  四、深化理解,应用拓展

  1、基本练习。

  用两种方法完成练一练 第1题

  比一比 哪一种方法简单一些?

  2、变式练习

  甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?

  五、课堂总结

  今天这节课你有什么收获?

  六、课堂作业

  练一练 第2、3、4、5

  《相遇问题》教学设计 篇4

  教学要求:

  1.认识相遇问题的特点,学会分析相遇问题的数量关系,能用两种方法解答相遇问题中求总路程的应用题。

  2.使学生形成两个物体运动的空间观念。

  3.进一步培养学生分析应用题的能力,并从中培养思维的灵活性。

  重点:认识相遇问题的结构特点,理解和掌握两种解题方法。

  难点:理解第二种解法的思路。

  课前准备:布置课前预习提纲:

  1. 把表格填完整。

  2. 出发3分后,两人的距离变成了多少?说明了什么?

  3. 两人3分所走路程的和与两家的距离有什么关系?

  教学过程:

  一. 复习。

  (一)口答下面应用题:

  ⑴张华每分走60米,走了3分,一共走了多少米?

  ⑵一列汽车从甲城开往乙城,用了5小时,平均每小时行42千米, 甲、乙两城相距多少千米?

  师问:这两道题的数量关系是什么?板:速度时间=路程

  (二)引入:

  师:这两道题都是讲一个人或一个物体运动的情况,这节课我准备研究两个人或两个物体运动的情况。

  二. 新授:

  (一)认识相遇问题的特点。

  ⑴多媒体出示鸭子图,让学生观察:

  ①这两个鸭子出发的时间怎样?

  ②走的方向怎样?

  ③最后它们怎样了?

  ⑵多媒体演示后,学生回答刚才老师的.问题。

  板:时间:同时出发

  方向:相向而行

  结果:相遇

  (二)出示课题及学习目标。

  ⑴师:这节课我们研究的就是两个物体同时出发的,相向而行的,最后相遇的这一类应用题,也就是相遇问题。

  ⑵出课题:相遇问题

  ⑶出学习目标:

  ① 理解相遇 、速度和的概念。

  ② 会用两种方法解答。

  (三)教学准备题

  ⑴多媒体演示表格,填表,师:昨天老师布置了3道预习提纲让同学们预习课本P58-59,现在来检查一下你们的预习情况。

  ⑵指名回答提纲①,填表格。

  ⑶指名回答提纲②,出示相遇。

  ⑷指名回答提纲③,出示两家的距离正好是两人3分所走路程的和。

  小结:这道题他们是同时出发的,相向而行的,最后他们相遇了。

  (四)把准备题改成例题

  ⑴出示例题:张华和李诚同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米,经过3分,两人相遇。他们两家相距多少米?

  ⑵审题:

  ①师问:张华和李诚出发的时间怎样?走的方向怎样?结果怎样 了?

  ②指名回答。

  ③师问:问题是求什么?求两家相距多少米也就是求张华和李诚的什么?

  ④指名回答。

  ⑤板:他们两家相距的米数正好是两人3分所走路程的和。

  ⑶教学第一种解法。

  ①多媒体演示第一种解法的思路。

  ②学生根据演示列式计算,

  板:603+703

  =180+210

  =390(米)

  ③学生讲解题思路。

  ④板:先求两人各自走的路程,再加起来。

  (4)教学第二种解法。

  ① 师问:还有别的解法吗?让学生试着列出式子。

  ② 通过多媒体演示,帮助学生理解第二种解法的解题思路。

  ③ 四人小组讨论解题思路。

  ④ 指名回答解题思路,板:先求速度和,再求总路程。

  ⑤ 齐读。

  (5)对比,小结。

  师:这两种方法都是相遇问题中求总路程的,这两种方法的思路相同吗?结果相同吗?

  (五)学习例5。

  (1)多媒体出示自学提纲,学生自学P58例5。

  提纲:①课本用了几种解题方法?

  ②每一种解题方法的思路是什么?

  (2)指名回答提纲。

  (3)通过两道例题的教学,引导学生总结出第二种解法的关系式:速度和时间=路程,并齐读一次。

  (4)质疑。

  四、巩固练习:

  1、 课本P59做一做1。

  2、 课本P59做一做2。

  3、 根据算式补充条件或问题:(多媒体出示)

  ① 两人同时从两地相对走来,甲每分钟走45米,乙每分钟走54米,经过4分钟两人相遇。 ?(45+54)4

  ② 两列火车同时从两站相向开出,甲车每小时行48千米,乙车每小时行52千米,,两站间的铁路长多少千米?

  485+525

  ③ 王师傅和李师傅共同加工一批零件,王师傅每小时加工25个,,两人一共加工4小时正好完成任务,这批零件有多少个?(25+20)4

  4.只列式不计算。(多媒体出示)

  ① 两辆汽车同时从两地相对开出,3小时相遇,甲每小时行45千米, 乙车每小时比甲车快5千米,两地相距多少千米?

  ② 李明和小冬同时从某地出发,背向而行,李明每分走55米,小冬每分走60米,经过4分,两人相距多少米?(多媒体演示背向而行)

  五.小测:

  ⑴甲、乙两人同时从两地面对面走来,经过6分相遇,(如图),求两地间的总路程。

  法一:①相遇时,甲行了多少米?列式:

  ②526表示:

  ③ 两地间的总路程,列式:

  法二:④两人的速度和,列式:

  ⑤两地间的总路程,列式:

  ⑵选择:(把正确答案的序号填在括号里)

  ① 两辆摩托车同时从一个地方向相反方向开出,甲车每小时行42千米,乙车每小时行53千米,2.5小时后两车相距多少千米?( )

  A(42+53)2.5 B(53-42)2.5 C 42+532.5

  ② 客车和卡车分别从两地同时相向而行,客车每小时行45千米,卡车每小时比客车少行5千米,3.5小时后两车相遇,两地间的距离是多少千米? ()

  A (45+5)3.5 B (45-5+45)3.5C (45+5+45)3.5

  ⑶列式解答:

  甲、乙两个小组从两地同时相向挖一条水渠,甲组每小时挖42米,乙组每小时挖38米,经过3小时正好挖完。这条水渠共长多少米?

  多练题:两地相距100千米,甲、乙两人骑自行车同时从两地相对出发, 甲每小时行14千米,经过4小时与乙相遇。相遇后再经过2小时,甲、乙两人相隔多少千米?

  六.小比赛

  ⑴两列火车同时从两个城市相对开出,甲列车每小时行50公里,乙列车每小时行40公里,经过4小时相遇。两个城市间的铁路长多少公里?( )

  A 50+404 B (50+40)4 C 504+404 D 40+504

  ⑵客轮和货轮同时从两个港口对开,16小时相遇。客轮每小时行28千米,货轮每小时行24千米。两个港口相距多少千米? ( )

  A (28+24)16B 2416+28C 2816+24 D 2824+2816

  ⑶小刚家在学校南面,志华家在学校北面。小刚每分走65米,走到学校用8分;志华每分走64米,走到学校用7分。求小刚家到志华家有多远? ( )

  A 658+647B 657+648 C (65+64)(8+7) D (65+64)7+65

  ⑷甲乙两人同时从两地出发,相向而行,甲步行每小时走5公里,乙骑自行车每小时走16公里,3小时后两人还相距7.5公里,求两地间相距多少公里? ()

  A (16+5)3+7.5 B (16+5)3-7.5

  C 163+53+7.5 D (16+5+7.5)3

  ⑸甲乙两人各从所在村相对出发,甲每小时走11公里,乙每小时走10公里,相遇时甲走4小时,乙比甲少用1小时,两个村间有多少公里? ( )

  A 114+101 B 114+10(4-1) C 114+10(4+1)

  D(10+11)4-10 E (10+11)3+11

  七.总结。师:这节课学习了什么?这类应用题有几种解法?

  八.作业:P61 1、2

  《相遇问题》教学设计 篇5

  教学目标:

  1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能正确熟练地解答相遇问题应用题。

  2、沟通“相遇问题”三种类型的内在联系,提高学生的分析和判断能力。

  教学重点:

  沟通“相遇问题”三种类型的内在联系

  教学用具:

  幻灯、小黑板

  教学过程:

  一、组题练习沟通联系

  1、练练

  ⑴两列火车分别从甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米,3小时后相遇。甲乙两站相距多少千米?

  ⑵两列火车分别从474千米的.甲乙两站同时相对开出,一列火车每小时行75千米,另一列火车每小时行83千米。几小时后相遇?

  ⑶两列火车分别从474千米的甲乙两站同时相对开出,3小时后相遇。一列火车每小时行75千米,另一列火车每小时行多少千米?

  2、说说

  教师板书:

  ⑴(75+83)*3=474千米

  提问:先求什么?再求什么?

  ⑵474/(83+75)=3小时

  提问:先求什么?再求什么?

  ⑶474/3—75=83千米

  提问:先求什么?再求什么?

  3、比一比

  这3题的条件和问题有什么相同和不同的地方?

  教师要求学生填表:

  条件

  算式

  一共行的路程

  相遇的时间

  速度

  第一题

  第二题

  第三题

  归纳小结:不管是哪一类总是先求速度和。

  二、变式练习加深理解

  1、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行的路程是小青的2倍,两人20分钟相遇。甲乙两地相距多少米?

  提问:应先求什么?为什么?

  学生练习(60+60*2)*20

  还有别的方法吗?

  2、小青和小刚分别从甲乙两地相对而行。小青每分钟行60米,小刚跑步每分钟行120米,两人20分钟后还相距400米。甲乙两地相距多少米?

  学生练习:400+(60+120)*20

  你能说说“两人20分钟后还相距400米”这句话的意思吗?

  三、课堂练习

  课本练习八(一)第2——7题

  《相遇问题》教学设计 篇6

  一、教材分析:

  《相遇问题》是北师大版五年级下册第七单元“用方程解决问题”第二课时。这部分内容是在学生掌握一个物体运动中有关速度、时间和路程之间的数量关系的基础上安排学习的,主要是研究两个物体的运动情况,是今后学习较复杂的行程问题及工程问题的基础。

  二、学生分析:

  五年级的学生具有一定观察、估计、画图分析、归纳、整理能力,也具有一定的抽象逻辑思维能力。鉴于学生的思维特点,在教学中我采用让学生“演一演”,“估一估”,“画一画”,“列一列”,“做一做”,“说一说”等活动,引导学生用方程解决有关类似“相遇问题”的实际问题,从而体会数学的模型思想。

  三、教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  四、教学重点:

  理解相遇问题的结构特点,能根据速度、时间、路程的数量关系,利用方程解决求相遇时间的问题。

  五、教学难点:

  让学生在用方程解决行程问题、工程问题等一系列实际问题中,掌握用ax+bx=c的等量关系解决问题,体会数学的模型思想。

  六、教学具准备:

  教学课件。

  七、教学过程:

  一、创设情境,想方案,唤醒旧知

  1、出示书上情境并由教师讲述故事:

  淘气和笑笑是好朋友,他们经常一起玩,一起做作业。

  他们两家相距的路程,及平时步行速度是这样的,(课件出示)

  有一天,淘气到笑笑家做作业。淘气回到家后,发现文具盒忘在笑笑家了,就打电话给笑笑,说:要拿回文具盒。聪明的同学们,想想看:淘气要拿到文具盒有哪些方案?

  ①方案1:笑笑送去;②方案2:淘气去取;③方案3:在途中交接。

  2、揭示课题:

  师:这三种方案,哪种方案淘气能最快拿到文具盒?(第三种方案)

  像这样两人对走,在途中交接的情形,就是今天我们要研究的内容。(板书课题:相遇问题)

  【设计意图:从学生的生活实际出发,设计“淘气把文具盒忘在笑笑家,请同学想想看:淘气可以通过哪些方法得到文具盒?”的情境,在学生说出有三种方法:“①笑笑送去;②淘气去取;③在途中交接”时,既复习“速度、时间、路程”这三者之间的关系,又引出相遇问题,这样让学生明确数学就在我们身边,从而激发学生学习数学的兴趣。】

  二、感受“相遇”的特点,弄清数量关系

  1、模拟演示。

  请两个同学上台走一走,模拟演示一下,淘气和笑笑途中交接这种方案的情形。

  师:淘气要最快拿到文具盒,他们该怎么走?

  两个学生演示,其他同学注意观察:从他们的演示当中,你们有什么发现?

  (根据学生回答,随机板书:同时相向相遇时间相同淘气走的路程+笑笑走的路程=总路程)

  师:结合刚才的演示,你们能估一估淘气和笑笑会在什么地方相遇?为什么?

  【设计意图:设计一个让学生上台走一走的情境,目的是让学生体会相遇问题的特点,从感性认识,抽象概括出相遇问题的特征:同时、相向、相遇、时间相同、淘气走的路程+笑笑走的路程=总路程。经过师生共同对知识的梳理,进一步深化对相遇问题的理解。】

  2、用线段图表示刚才演示情境,并写出等量关系。

  (1)请你们把刚才获取的信息在本子试着画出来,并写出数量关系式,看谁画得最简洁、明了。

  (2)学生独立画图,教师巡视。

  (3)展示交流,学生互评。

  先由学生说一说,自己是怎样画的,然后进行互评。同时注意提醒学生:谁应画长一点?

  【设计意图:借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中发挥着重要作用。画图是学生分析数量关系的一种重要图形表征方式。画图是一种策略,让学生尝试用图来表示数量关系,是学生学习的一种需要。因为它是帮助学生理解数量关系,体现数形结合的'观点。通过画图,学生能直观地看出“淘气走的路程+笑笑走的路程=总路程”这一数量关系,从而加深对题目数量关系的理解。】

  3、学生独立列方程解答。

  师:请同学们独立用列方程解答。在解答过程中,思考你是根据哪个等量关系式来列方程的。

  三、学生独立解答,教师巡视。

  1、交流反馈。

  师:你是怎样列方程的?根据什么等量关系式来列?

  2、回顾反思。

  (1)检验结果。

  师:我们怎样可以保证求得的结果一定是正确的?

  (2)回顾过程。

  师:让我们回顾一下,刚才我们是怎样列方程解决这个问题的?

  【设计意图:回顾列方程解应用题的一般步骤,帮助学生建构系统化知识体系,提高学生熟练运用所学知识解决问题的能力。】

  3、解决问题

  师:现在老师把淘气和笑笑的速度调整了一下,你们还会吗?动手试一试吧!

  课件出示:如果淘气的步行速度是80米/分,笑笑的步行速度是60米/分,他们出发后多长时间相遇?先想一想,再列方程解答。

  (1)学生独立列出方程解决问题。

  (2)反馈时,指名说说根据什么等量关系列方程。

  (3)引导比较,渗透函数思想

  师:请同学们,仔细观察这两道题,有什么发现呢?

  四、多样素材,对比沟通,建立模型

  1、师:求相遇时间你们会解决了,下面这道题该怎样解答呢?请同学们试一试吧!课件出示:(学生自选一题解答)

  (1)有一份5700字的文件,由于时间紧急,安排甲、乙两名打字员同时开始录入。甲每分录100个字,乙每分录90个字,录完这份文件需要多长时间?

  (2)挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米,挖通这条隧道要用多少天?

  2、学生独立完成。

  3、全班交流:分别说说是用怎样的等量关系列出方程。

  4、联系沟通,建立模型

  师:前面我们解决有关“行程问题”、“打字问题”,“挖隧道问题”这些问题好像都不一样,它们有没有什么相同的地方?

  引导学生说出它们都是根据:“甲的路程+乙的路程=全长”进行列方程解答。

  【设计意图:从行程问题拓展到工程问题,拓宽解决问题的面。最后通过寻找相同点,沟通这些问题的联系,让学生初步体会模型思想。】

  5、举例说一说。

  师:同学们,其实我们的相遇问题并仅仅只限于这些,它还涉及到我们生活中的方方面面,我们试着把它找出来,好吗?

  五、拓展提升

  师:相遇问题难不倒同学们,类似相遇问题的题目同学们也很快解决了。你们想不想挑战难度更大的问题?那我们一起来看看下面这道题。

  (课件出示)甲、乙两列火车同时从相距1980千米的两个城市相对开出,12小时后相距180千米,甲车每小时行驶70千米,乙车每小时行驶多少千米?

  四、回顾梳理,总结反思。

  师:这节课你有什么收获?还有哪些问题?

  《相遇问题》教学设计 篇7

  1、内容

  九年义务教育人教版六年制小学数学第九册第二单元的《相遇问题》

  2、教材分析及学生特点:

  相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

  3、设计思想及理念

  设计思想:

  (1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

  (2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

  理念:

  (1)注重将已有的知识、经验与教师通过书本、网络所提供的'资源进行整合,从而实现教学目的。

  4、教学目标

  (1)知识与技能:

  了解相遇问题的应用题的基本结构,掌握解题方法。

  (2)过程与方法:

  经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

  (3)情感态度与价值观:

  A:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

  B:培养学生在生活中提出数学问题的意识。

  5、教学的重点和难点

  重点:了解相遇问题的应用题的基本结构,掌握解题方法。

  难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

  6、教学过程

  (一)创设情境

  1、复习旧知,引发联想

  画面演示,画外音叙述:

  这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

  这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

  请学生谈谈对这两道题的想法。

  2、学生表演,理解概念

  刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

  屏幕上依次闪动出现:相对、同时、相遇、相距

  (1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

  (2)老师叙述,学生表演。

  两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

  提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

  (二)尝试探索

  1、出示例题

  小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米。经过4分钟,两人在校门口相遇。他们两家相距多少米?

  2、提出问题

  看到例题,你会想到什么问题?

  师生对问题进行筛选,重点解决下面几个问题:

  (1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

  (2)4分钟的时候会出现什么情况?

  (3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)

  3、列式讨论

  (1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

  主要有两种思路:

  第一种:65×4+70×4

  第二种:(65+70)×4

  4、认识速度和

  题目中的65米、70米叫做什么?现在把65米和70米合在一起,谁能给这个和,起个合适的名字呢?

  5、质疑

  “对这道题还有什么不同的想法或问题吗”

  (三)巩固发展

  1、基本练习

  (1)两只轮船同时从上海和武汉相对开出。从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。上海到武汉的航路长多少千米?

  (2)五(1)班举行一个“艺术节”,分配小红和小丽两名同学折纸鹤,小亮折纸花,小红平均每小时折20只纸鹤,小丽平均每小时折25只纸鹤,小亮平均每小时折18朵纸花。这三个同学一起折了2个小时,正好完成任务。一共折了多少只纸鹤?

  2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

  3、游戏

  再请两位同学表演,并提问两人相对而行可能出现什么情况?

  (1)两人相遇;

  (2)行走一段未相遇;

  (3)相遇后继续行走。

  给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

  教师一边叙述,一边出示5分钟时间的牌子。

  (1)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,两人走了5分钟相遇,甲乙两地相距多少米?

  (2)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,两人走了5分钟时还相距200米,甲乙两地相距多少米?

  (3)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,见面后两人擦肩而过,5分钟时又相距200米。甲乙两地相距多少米?

  《相遇问题》教学设计 篇8

  教学内容:课本应用题例6及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求相遇时间问题”的特征和解题方法。

  教学难点:“求相遇时间问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟 ?

  2、口头列式 1500/100=15分钟

  3、复习“速度”、“时间”、“路程”三者之的.数量关系。

  (板书:时间= 路程/速度)

  二、学习新课

  1、例6教学

  出示:两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  读题分析

  思考:这里的460米是几个人走的?

  两人是怎 样走的?

  一份钟两人一共行了多少米?

  (第三问时:用课件演示帮助,学生理解)

  学生尝试练习

  评讲板演,理清解题思路,概括解题方法

  教师板书:60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

  质凝:求相遇的时间应先求什么,再求什么?

  你知道吗?相遇时他们各行了多少 米?

  揭示课题:求相遇时间

  2、试试

  甲乙两台机床同时加工580个零件,甲机床每小时加工28个,乙机床每小时加工30个,加工完这批零件需要多少小时?完成时各加工了多少个零件?

  三、变式深化

  1、对比练习

  ⑴两人同时从相距2400的两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过几分钟两人相遇?

  ⑵两人同时从两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过3钟两人相遇,两地相距多少米?

  比一比你能找到两题之间的联系吗?

  2、变式应用

  自行车商店要装配2500辆自行车,一个组每天装配52辆,另一个组每天装配48辆。两个组同时装配,完成任务要多少天?

  四、小结

  今天这节课主要学习了什么内容?你获得什么本领?

  五、课堂作业

  练一练的第2——5题

  板书设计 :

  求相遇时间

  两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

  《相遇问题》教学设计 篇9

  教学内容:课本练习七(二)

  教学目标:

  1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能解答稍复杂的相遇问题应用题。

  2、培养学生收集信息、处理信息和解决实际问题的`能力。

  教学重点:“求相遇问题”的特征和解题方法。

  教学用具:幻灯、小黑板

  教学过程:

  一、基本练习

  1、口头列式

  工人们修一条长120米的路,每天修15米,几天修完?

  一辆汽车5小时各地区320千米,每小时行多少千米?

  火车每小时行85千米,行425千米要多少小时?

  要求学生说出基本的数量关系式

  2、指名板演 其余同练习

  ⑴甲乙两架飞机分别从两城去同一个城市,甲机每分钟飞行9千米,乙机每分钟飞行12千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  ⑵两个水管同时向游泳池中注水,大管每小时放水16吨,小管每小时放水12吨。放满224吨水要多少小时?

  要求学生说清解题的思路

  二、变式练习 加深理解

  ⑴改变上1的条件:

  甲乙两架飞机分别从两城去同一个城市,每分钟飞行9千米,乙机每分钟比甲机多飞行3千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  让学生分析:与1 有什么不同,要先求什么?

  列式计算:9+3=12千米

  (9+12)*40=840千米

  ⑵改变上2的条件:

  两个水管同时向游泳池中注水,大管3小时放水48吨,小管每小时放水12吨。放满224吨水要多少小时?

  让学生分析:与2 有什么不同,要先求什么?

  列式计算:48/3=16吨

  224/(16+12)=8小时

  ⑶两辆汽车同时从相距190千米的甲乙两地相对开出,每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

  你能表演一下这种情况吗? 其实是什么以生了变化?

  学生尝试练习

  列式计算:(190-95)/(45+50)

  ⑷甲乙两地相400千米。一辆客车从甲地开往乙地,每小时行68千米,在客车行了28千米以后,一辆货车从乙地出发开往甲地,每小时行56千米。货车开出后几小时两车相遇?

  提问:现在的情况又发生了什么变化?

  哪一段路程是两车同时行的?请你在图上表示出来?

  学生尝试练习

  列式计算:(400-28)/(68+56)

  讨论:刚才3、4两题我们都可以通过转化变成相遇问题,然后进行计算。

  三、课堂作业

  练习七(二)第9——14题

  《相遇问题》教学设计 篇10

  设计思路:

  本课时是在学生学习〈〈义务教育课程标准验教科书〉〉五年级上册四单元的基础上设计的,旨在将学生的解题思路与方法繁华、条理化。掌握等量关系,形成思维模式和优化和解题模式。

  在本册四单元中,根据数量关系而得到的两积之和(其中一个因数相同),从而引出ab+ac=(a+b)c的形式,这一类习题均与学生熟知的相遇问题有联系。正基于此,期望通过熟练掌握相遇问题的解题思路,利用迁移规律,力求能运用这一思路解决与之特征相似的问题。

  学生是学习的主体,站在他们的立场上,他们更喜欢“动态”的课程,他们更易于接受与生活紧密联系、触手可及的问题,同时,一旦知识深深烙入他们的脑海,只要适时点拨与梳理,更易于掌握与之相近、相临的问题。因此,本课设计,通过学生爱动、爱玩、爱表现的特点,通过一系列走、演、操作与交流等到形式,力求“走近”、“走进”生活,让学生去体验、去感受数学,积极主动吸收知识,实现知识的理解、掌握与升华。达成轻松学习、快乐学习、灵活高效的目的。

  教学内容:

  相遇问题及运用相遇问题解题思路解决生活中的实际问题

  教学目标:

  1、通过让学生亲身体验,建立并理解相遇问题的基本数量关系,并能结合实际问题描述数量关系。

  2、运用迁移规律,将相遇问题解题思路运用于与之相似的问题之中,能将具有相遇问题特征的一系列问题转化成相遇问题去分析、去思考、去高效解决。

  3、随着问题的解决,让学生感受到数学就在身边,使他们热爱数学,享受问题解决时的成就感。

  教学重、难点:

  运用相遇问题的解题思路解决具有其特征的数学问题。

  教学准备:

  老师准备:相遇问题演示器、玩具车、实物卡片

  学生准备:玩具车、实物卡片

  教学过程:

  一、创设情景,导入新课:

  1、提问:乘法分配律用字母应该臬表示,你能用语言描述吗?(为相遇问题的两种基本选题关系的概括奠定基础)

  2、请最后一排的一名同学走向讲台,同时老师沿直线迎上去,当与该生相遇时提问:

  我俩现在已经怎样——(相遇)(用生活中的场景理解、感 知什么是相遇)

  请思考后回答:我俩在刚才这一过程中,什么相同,什么不同,能建立一个怎样的等量关系。(建立“甲行路程+乙行路程=两人行的`总路程”)

  二、建立模型:

  1、建立相遇问题等量关系

  (1)如果刚才我走了5秒,每秒行0.6米,后排的同学每秒行0.8米,出发时我们相距多少米?(感兴趣的问题更利于学生思考,他们会积极主动去解决问题

  根扰刚才建立的等量关系,结合这里的条件,你能把它变得具体一点?

  (2)通过引导得出:

  老师速度 明间+学生速度=距离

  (老师速度+学生速度) 时间=距离

  速度和 时间=距离

  (3)同桌交流:这样列的依据是什么,怎样描述这些等量关系。(将生活语言转化成数学语言)

  (4)你能解决这个问题吗

  2、类题强化

  请两名学生表演(其他学生用玩具车演示)

  小明和小东从相距560米的两地出发,相对而行,经过6分钟相遇,如果小明每分钟行75米,小东每分钟行多少米?

  (1)台上台下学一演示后,请学生建立等量关系并提问:

  你能建立几种。建立后引导学生间交流(学生观察表演,自已动手操作,能更深刻掌握知识)

  (2)尝试解决问题,老师引导提问:你有什么发现:刚才是路程不知道,现在是速度不知道,怎么办呢?(可以设小东每分钟 米)

  (3)你能解决这个问题吗?

  3、建立模型

  让我们来总结一下行走中产生的这一类问题吧。

  甲行速度 时间+乙行速度 时间=距离

  (甲行速度+乙行速度) 明间=距离

  速度和 时间=距离

  4、描述模型

  同桌相互描述理解这几个等量关系

  《相遇问题》教学设计 篇11

  教学目标:

  1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。

  2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

  3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

  教学重点:正确地寻找数量之间的相等关系。

  教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

  教学过程:

  一、激发

  1.在相遇问题中有哪些等量关系?

  板书:甲速×相遇时间+乙速×相遇时间=路程

  (甲速+乙速)×相遇时间=路程

  2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?

  生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。

  甲车 相遇 乙车

  每小时122千米 每小时87千米

  北京 上海

  第一种解法:用两车的速度和×相遇时间:(122+87)×7

  第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7

  3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的.应用题。 (板书课题)

  二、尝试

  1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?

  2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。

  3.根据线段图学生找出数量间的相等关系:

  甲车7小时行的路程+乙车7小时行的路程=1463千米

  4.设未知数列方程并解答。

  解:设甲车平均每小时行x千米。

  87×7+7x=1463

  609+7x=1463

  7x=1463-609

  7x= 856

  x=856÷7

  x=122

  答:甲车平均每小时行40千米。

  4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。

  三、应用

  试一试,试着让学生列出两种方程,如:

  32x+32×7=480,

  480-32x=32×7

  四、体验

  相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

  五、作业

  练一练

  教学后记:

  这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识。

  《相遇问题》教学设计 篇12

  教学目标:

  1、理解“相遇问题”的意义,探究发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的实际问题。

  2、感受“相遇问题”的解题方法和乘法分配律之间的联系。

  3、培养学生的观察、分析、推理、判断能力,以及自主探究和创新精神。

  教学重点:理解“相遇问题”的意义,掌握解题思路和解答方法。

  教学难点:用列表、画图的方法整理题目中的信息,分析数量关系。

  教学准备:课件

  教学过程:

  一、谈话引入

  1、回答下面各题并说出数量关系。

  (1)小明每分钟走70米,走了4分钟,一共走了多少米?

  (2)小芳每分钟走60米,走了4分钟,一共走了多少米?

  学生回答并说出数量关系,教师板书:速度×时间=路程

  2、导入新课。

  (1)课件出示教材第68页例题7情境图。

  (2)理解“相遇问题”的意义。

  请两名学生到讲台前演示当时的情境。

  组织学生进行观察,并思考:他们在出发的时间、地点、方向上有什么特点?

  追问:他们的距离有什么变化吗?

  (3)导入:这两个同学从两地同时出发,相向而行,最后两人在途中相遇,这就是我们这节课要研究的“相遇问题”。(板书课题)

  二、交流共享

  1、收集信息。

  请同学们再次阅读题目,观察情境图,说说题目中的已知条件和所求的问题分别是什么。

  已知条件:小明每分钟走70米;小芳每分钟走60米;经过4分钟两人相遇。

  所求问题:他们两家相距多少米?

  2、整理信息。

  (1)引导:我们找到了这么多信息,想一想,我们学过了哪些解决问题的策略呢?(列表、画图)你打算用什么策略把这些信息整理出来?

  (2)学生自主进行信息整理。

  教师巡视,进行个别辅导。

  (3)组织全班交流。

  学生可能用画图或列表的方法进行整理,教师投影展示学生的线段图或表格,组织进行评议和订正。

  画图整理:

  70米70米70米70米60米60米60米60米

  小明家小芳家

  ?米

  列表整理:

  小明从家到学校每分走70米走了4分钟

  小芳从家到学校每分走60米走了4分钟

  3、分析解题思路。

  提问:你能根据整理的.结果,分析数量关系并确定先算什么吗?

  思路一:小明走的路程加上小芳走的路程就是他们两家相距的路程,可以先分别算出小明和小芳走的路程,再把两个人走的路程相加,就是他们两家相距的路程。

  思路二:两人4分钟一共走的路程,就是两家相距的路程,可以先算两人的速度和,再把“速度和×相遇时间”就等于总路程。

  4、解决问题。

  学生根据以上两种解题思路,用两种不同的方法进行解答。

  组织汇报交流。

  解法一:70×4+60×4

  =280+240

  =520(千米)

  解法二:(70+60)×4

  =130×4

  =520(千米)

  5、观察比较,感受联系。

  提问:两种解法有什么联系?

  引导学生从以下几方面进行交流:

  (1)两种方法的得数相同,可以用什么符号将它们连起来?

  (2)观察等式,你想到了哪个运算律?

  (乘法分配律)

  6、回顾反思,交流体会。

  提问:回顾解决问题的过程,你有什么体会?

  交流体会:画图和列表都可以帮助我们理解题意;线段图可以帮助我们找到不同的解题方法;要注意寻找不同解法之间的联系。

  三、反馈完善

  1、完成教材第69页“试一试”。

  这道题是例题7的补充,题中一个向东走,一个向西走,可以理解为是“相背而行”,“相背而行”求总路程的方法和“相遇问题”求总路程的方法相同。

  2、完成教材第69页“练一练”。

  这道题和例题7相似,进一步巩固画线段图整理信息的策略,加深对“相遇问题”的理解。

  3、完成教材第70页“练习十一”第2题。

  这道题是“工程”问题,也可以用“相遇问题”的解题思路来思考,“第一队每天开凿12米”可以看作是第一队的速度,“第二队每天开凿15米”就看作是第二队的速度,“经过8天正好凿通”可以看作是相遇时间,“这条隧道长多少米”看作是总路程。

  四、反思总结

  通过本课的学习,你有什么收获?还有哪些疑问?

  《相遇问题》教学设计 篇13

  教学目标

  (一)理解相遇问题的特点,并学会解答求路程的相遇问题。

  (二)通过观察、比较、分析,提高学生灵活解答应用题的能力,培养学生合作意识。

  教学重点和难点

  重点:掌握求路程的相遇问题的解题方法。

  难点:理解相遇时,两人所走路程的和正好是两地的距离;相遇时间为两人共同所走的同一时间。

  教学过程设计

  (一)复习准备

  1.口头列式并计算:

  小明每分走50米,小华每分走60米。

  (1)小明5分走多少米?(50×5=250(米)。)

  (2)小华5分走多少米?(60×5=300(米)。)

  (3)小明、小华5分共走多少米?(①50×5+60×5=550(米);②(50+60)×5=550(米)。)

  (4)小明5分比小华少走多少米?(①60×5-50×5=50(米);②(60-50)×5=50(米)。)

  2.小结:行程问题的三量关系是什么?(速度×时间=路程;路程÷速度=时间;路程÷时间=速度。)

  (二)学习新课

  1.认识相遇问题。

  (1)请两名同学到教室前边迎向走,相遇为止。

  (2)同学们注意观察并说出他们是怎么走的?(同时,从两地,相对而行。)

  (3)再走一遍,注意观察两人之间的距离有什么变化?(两人之间的距离越来越近,最后变为零。)

  教师:当两人之间的距离变为零时,我们就说两人“相遇”。

  具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做行程问题中的“相遇问题”。(板书:相遇问题)

  (4)相遇问题与以前学习的行程问题有什么不同?(以前学习的行程问题是研究一个物体的运动情况,相遇问题是研究两个物体同时运动的情况。)

  2.准备题。

  张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。

  (1)学生打开书,看线段图填表。

  走的时间/张华走的路程/李诚走的路程/两人所走路程的和/现在两人的距离

  (2)同桌二人用一把尺子、两块橡皮合作演示张华与李诚的行走过程,并说出每过1分后,两人所走路程的和与现在两人的距离。

  (3)思考:

  ①出发3分后,两人之间的距离变成了多少?(出发3分后,两人之间的距离变成了零。)

  说明3分后,两人相遇了。

  ②两人所走路程的和与两家的距离有什么关系?(两人所走路程的`和+现在两人的距离=两家的距离。当3分后,两人相遇时,即两人之间的距离为零时,两人所走路程的和就与两家的距离相等。)

  小结:相遇时,两人所走路程的和就是两家的距离。

  3.学习例5:

  小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?

  (1)此题是不是相遇问题?怎么看出来的?

  (2)学生用学具演示小强和小丽的行走过程。

  思考并讨论:

  ①校门口是否在两家的中点?为什么?(小强的速度比小丽的慢,相遇时离小强家较近。)

  ②根据题意画出线段图。

  ③两人4分后在校门口相遇,说明他们两家相距的米数正好是什么?(4分后相遇,说明他们两家相距的米数正好等于4分所走的路程的和。)

  (3)怎样求两人4分走的路程和呢?

  学生列式计算,并讲解。

  解法1:

  答:他们两家相距540米。

  解法2:

  重点理解第二种解法。

  ①两人同时走1分,他们之间的距离有什么变化?(学生演示学具,缩短了65+70=135(米)。)

  1分后缩短的135米,叫什么呢?(小强的速度+小丽的速度=速度和)

  ②2分后缩短了几个速度和?(学生演示学具)

  ③3分后缩短了几个速度和?

  ④4分后缩短了几个速度和?

  小结:速度和与两家的距离有什么关系?

  速度和×相遇时间=路程和。

  (4)比较以上两种解法有什么联系和区别?哪种解法简单?为什么?

  讨论得出:

  区别:从数量关系上看,第一种解法是用两人各自的速度乘以时间,得出两人各自走的路程,然后再求两人所走路程的和;第二种解法是根据两人同时出发后相遇,所走时间相同,可以先算出两人每分一共走多少米?也就是先求“速度和”,再乘以时间。

  联系:从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。

  第二种解法比较简便,它是第一种解法的简便运算。

  (三)巩固反馈

  1.P59“做一做”。

  (1)学生独立解答后,分析解题思路,订正。

  解法1:54×5+52×5=270+260=530(米)。

  解法2:(54+52)×5=106×5=530(米)。

  (2)用哪种方法解答?((44+52)×2.5=96×2.5=240(千米)。)

  2.研究 P61:2。

  (1)思考:这题是不是相遇问题?它与相遇问题有什么不同?(相遇问题:相对而行;而此题:相背而行。)

  (2)怎样解答?((44.5+38.5)×3=83×3=249(千米)。)

  为什么解答方法与相遇问题相同?(相遇问题:两车之间距离在缩短;相背问题:两车之间距离在扩大。所求路程都是两车在相同时间内所行路程的和,所以解答方法相同。)

  3.将例题改编成:

  (1)如果同时行5分,会出现什么情况?此时两人相距多少米?

  (65+70)×(5-4)=130(米)。)

  (2)如果4分后两人还相距150米,他们两家相距多少米?

  (65+70)×40+150=690(米)。)

  (3)如果小强先走2分后小丽才出发,经过4分相遇,两家相距多少米?

  (①(65+70)×4+65×2=670(米);②65×(4+2)+70×4=670(米)。)

  4.课后作业;P61:1,3。

  课堂教学设计说明

  相遇问题是研究两个物体同时运动的情况,两个物体的运动情况是多种多样的。相遇问题关键是要弄清每经过一个单位时间,两个物体之间的距离的变化情况。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。因此在复习了行程问题的速度、时间和路程的关系后,通过两名同学的表演,引导学生观察、理解相遇问题的特点。又多次通过用学具演示及同桌的合作,不仅使学生理解了什么是相遇,相遇时两人所走路程的和正好是两地的距离及相遇时间为两人共同所走的同一时间这一教学难点,还提高了学生动手操作的能力,培养了学生的合作意识。

  练习的设计由易到难,在学生掌握了基本的相遇问题的解答方法后,又出现了各种变化情况,有利于防止学生死套公式,形成思维定势,提高学生灵活解答应用题的能力。

  板书设计

  相遇问题

  解法1:

  小强所走路程+小丽所走路程=路程和

  65×4+70×4

  =260+280

  =540(米)

  解法2:

  速度和×相遇时间=路程和

  (65+70)×4

  =135×4

  =540(米)

  答:他们两家相距540米。

【《相遇问题》教学设计】相关文章:

相遇问题教学设计06-17

植树问题教学设计06-16

烙饼问题教学设计05-25

解决问题A教学设计04-15

《解决问题》教学设计06-04

比例解决问题教学设计06-10

线性规划问题教学设计11-17

《解决问题连除》教学设计03-28

小学语文《科学家的问题》优秀教学设计01-16