- 相关推荐
古今数学思想读书心得体会
当仔细品读一部作品后,大家心中一定是萌生了不少心得,是时候抽出时间写写读书心得了。那要怎么写好读书心得呢?以下是小编帮大家整理的古今数学思想读书心得体会,供大家参考借鉴,希望可以帮助到有需要的朋友。
古今数学思想读书心得体会 1
阅读了《古今数学思想》一书后,有很多体会和感想:将数学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱数学、学数学的良好风气有着重要作用。对此数学教学是有许多工作可做的。在日常具体的教学过程中,如何真正落实渗透,是很值得我们不断思考很探索的。下面以讲授“圆”为例,就如何将数学史融入课堂教学谈一点做法与体会:
一、结合教材内容,“见缝插针”,使数学史自然融入课堂教学。
“圆”是一个古老的课题,人类的生活与生产活动和它密切相关。有关圆的知识在战国时期的《墨经》、《考工记》等书中都有记载,授课中将有关史料穿插进去,作为课本知识的补充和延伸。例如讲解圆的定义与性质时,可向学生介绍,约在公元前二千五百年左右,我国已有了圆的概念,考古说明我国夏代奴隶社会以前的原始部落时期就有圆形的建筑。至
于圆的定义和性质在《墨经》中已有记载,其中,“圆,一中同长也”,即圆周上各点到中心的长度均相等;此外,还进一步说明“圆,规写交也”,即圆是用圆规画出来的终点与始点相交的线。这与欧几里得的定义相似,而《墨经》成书于公元前4~3世纪,是在欧几里德诞生时间问世的。再比如圆心角、弓形、圆环形、圆内接正六边形、直角三角形的内切圆、圆锥等一系列概念与性质,在《墨经》、《考工记》、《九章算术》等书中都有记载,在本章引入时,我便用多媒体课件向同学们作简要介绍。这样,随着这一章教材的不断展开,同学们对我国古代在相关领域的发展概貌有个初步的了解,明白我国古代就对这些内容有了比较全面、系统的认识。特别是早在战国时期就有了论证几何学的萌芽,几乎与古希腊的几何学同时产生。
二、根据教材特点,适当选择数学史资料,有针对性地进行教学。
圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家作出过卓越贡献。该章的“读一读:关于圆周率π”对此作了简单的介绍,并提到祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,可选配了有关的史料,作一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过实践逐步认识到用古率计算圆周长和圆面积时,所得到的值均小于实际值,于是不断利用经验数据修正π值,例如古埃及人和巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外切正多边形来求圆周率的近似值,得到当时关于π的最好估值约为:3.1409〈π〈3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024〈π〈3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数的π值。我国以这一精度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔.卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明——火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界记录”,祖冲之计算出的圆周率就是其中一项。接着我再说明,我国的`科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新长征中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。
为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,还可进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了π是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止,例如1610年德国人路多夫根据古典方法,用262边形,计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在他的墓碑上,至今圆周率被德国人称为“路多夫数”。1873年英国的向克斯计算π到707位小数。1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重算一次。他从1944年5月到1945年5月用了一整年的时间来做此项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是,对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断深入的过程也使学生受到感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
三、吃透教材精神,采取多种形式,增强教学效果。
把数学史融入日常教学,进行思想教育,教师不仅要吃透教材的知识内容,还要努力挖掘教材的思想性,并采取多种形式,形象生动地进行教学。初三几何教材第七章的7.3节的例题四,是通过计算赵州桥桥拱的半径,使学生掌据垂径定理及其推论的应用,也是进行爱国主义教育,激励学生努力学习科学知识的好材料。为了增强教学效果,上课前可请美术教师画好赵州桥的彩色图画,当它在课堂上展示时,同学们一定会被这造型奇特、气势雄伟的赵州桥画面吸引住,等待教师的讲解。教师可指着画面向同学们介绍道:“这是河北省赵县的赵州桥,又名安济桥,建于一千三百多年前的隋代大业年间(公元605~618年),是一座世界闻名的石拱桥。整个桥身是圆弧的一段,长50多米,宽9米多。这么长的桥,全部用石头砌成,没有桥墩,只有一个拱形的大桥洞,横跨在37米宽的河面上。这样巨型的跨度,在当时是首屈一指。而更显示其先进技术的,是大拱圈上的两肩各有两个拱形的小桥洞,既减轻了桥身的重量,节省了石料,还增加了洪水季节桥下的过水面积,四个小孔可以辅助宣泄洪水,减轻了洪水对桥身的冲击力,不但坚固而且美观。这种设计是建桥史上的一个创举,创造了敞肩拱的新式桥型,使拱桥的建造技术达到了一个新水平。比欧洲19世纪建造的同类拱桥早一千二百多年。赵州桥经历了洪水、地震等自然界的袭击和一千多年使用的考验,依然巍然挺立,雄姿焕发,是我国宝贵的历史遗产。它表现了中国劳动人民的智慧和才干,是综合运用包括数学在内的多种科学知识的典范。下面我们就来算一算桥拱的半径”这样引导,同学们情绪高涨,课堂气氛活跃。
古今数学思想读书心得体会 2
题词是亥维赛(Oliver Heaviside)的:“逻辑可以等待,因为它是永恒的。”
“数学作为一门有组织的、独立的和理性的学科来说,在公元前600到前300年之间的古典希腊学者登场之前是不存在的。但在更早期的一些古代文明社会中已产生了数学的开端和萌芽。”前两章分别讲述两河流域和埃及的数学。
“角的概念想必是从观察到人的大小腿(股)或上下臂之间形成的角而产生的,因为在大多数语言中,角的边常是用股或臂的字来代表的。例如在英文中,直角三角形的两边叫两臂。(在汉文中直角三角形的一条直角边也叫股。——译者)”谁知道勾股定理中勾这个称呼是怎么来的?
“我们对巴比伦文明和数学的知识……得自其泥版的文书。……这些泥版的制作大抵在两段时期,有些是公元前2000年左右的,而大部分是公元前600年到公元300年间的。……较早期泥版上刻的是阿卡得(Akkad)文字……阿卡得人用一种断面呈三角形的笔斜刻泥版,在版上按不同方向刻出楔形刻痕。因此这种文字就叫做楔形文字。”
“巴比伦数系的突出之点是以60为基底并采用进位记号。起初巴比伦人没有用什么记号来表示某一位上没有数,因此他们写的数是意义不定的。”同一组符号可以表示80或3620,这要取决于头一个记号是表示60还是3600。“他们往往空出一些地方来表明哪一位上没有数,但这当然还会引起误解。在塞琉西(Seleucid)时期他们引入了一种特别的分开记号来表示哪一位上没有数。”这样他们就能明确表示3604=1*60^2 0*60 4了。“但即使在这段时期也还未采用一个记号来表明最右端的一位上没有数,如同我们今日所记的20一样。在这两段时期,人们都得依靠文件的内容,才能定出整个数字的确切数值。”阿拉伯数字(其实是印度数字)和零确实是伟大的发明!
“巴比伦人也用进位记法来表示分数。”例如同一组符号作为分数来记,可表示21/60或20/60 1/60^2。“所以他们数字系统的混淆不清比上面所指出的'还要厉害。”杯具啊!
巴比伦人会做加减法。也做乘法,如乘以37的做法是乘以30,另外再乘以7,然后把结果相加。整数除以整数是通过把倒数化成60进制的“小数”进行的。他们有数字表,可以查出1/a形式的数(其中a=2^x*3^y*5*z)怎样写成有限位的60进制“小数”。有些数表给出1/7、1/11、1/13等的近似值。他们也有表示平方、平方根、立方和立方根的数表。巴比伦人给出的根号2的近似值是1.414213...,而不是1.414214...(没有四舍五入,计算器给出的是1.4142135623730950488016887242097)。
巴比伦人计算高h、宽w的矩形对角线长度d的办法,是用近似公式d ≈ h w^2/2h。这公式在h>w时是很好的近似,因为它是d=h(1 w^2/h^2)^(1/2)的二项式展开的前两项。他们是怎么发现的?
巴比伦人会解一元二次方程,会解含十个未知量的十个(大多是线性的)方程,会求立方根。会算数列的和1 2 4 ... 2^n = 2^(n 1)-1和1 4 9 ... n^2= (1/3 2n/3) * (1 2 3 ... n),但没有给出推导。
“几何在巴比伦人的心目中是不重要的。……那些说明几何问题的图画得很粗,所用的公式也可能不正确。”他们似乎用A = c^2/12(其中c表示圆周长)这个法则得出圆面积,相当于把3作为圆周率,因为实际上c^2/12 = pi^2*r^2/3,而A = pi*r^2。不过在他们给出正六边形及其外接圆周长之比时,又用3又1/8作为圆周率。“在计算一些特定物理问题时,他们算出了一些体积,有些算对了,有些算得不对。”
“巴比伦位于古代贸易通道上,他们商业活动范围很广。巴比伦人用他们的算术和简单代数知识来表示长度和重量,来兑换钱币和交换商品,来计算单利和复利,来计算税额,来给农民、教会和国家之间分配收获的粮食。划分土地和遗产的问题引出代数问题。牵涉到数学的大多数楔形文字著作(除了数字表和解题的文件之外)都是关于经济问题的。”这符合历史唯物主义的范式。
天文学方面的文件大多产生在塞琉西时期。他们的天文学家能把新月和亏蚀的时间算准到几分钟之内。他们知道太阳年或回归年(季节年)等于12 22/60 8/60^2个月(从新月出现到下次新月为一月),并把恒星年(太阳相对于恒星的位置复原所需之时)准确算到4.5分。
“他们的日历是阴历。……235个阴历月份等于19个太阳年。……这种历法为犹太人、希腊人所沿用,罗马人起初也沿用,直到公元前45年他们采用儒略历法(Julian calendar)时为止。”
“把圆分为360度是巴比伦天文学家在公元前最末一个世纪里首创的。”
“与天文学密切相关的是占星术。……古代社会中伪科学性的预卜并非都用天文。他们认为数本身有神秘特性并可用之于预卜未来。我们可以在但以理书(the Book of Daniel)及新旧约先知的著述中看出巴比伦人预卜未来的做法,希伯来人的‘科学’测字术(gematria)(希伯来传统神秘主义的一种形式)就是根据这一事实而来的,即因希伯来人用字母来表示数,所以他们就认为由字母组成的每个字都具有一个数值。如果两个字的字母值之和相等,那就表明这两个字所代表的两种概念、两个人或两件事之间有重要的联系。在以赛亚的预言里(21:8),狮子宣告巴比伦城的沦落,因为希伯来文中狮子这个字和巴比伦这个字里,其字母所代表的数字之和是一样的。”这里的关键是两个词对应的数可能相等,古人还是tooyoung too simple啊。参照数理逻辑中的哥德尔数,我们可以把每个字母对应一个自然数,即建立一个从字母l到数字n(l)的映射,然后对一个词的第一个字母l1取2的n(l1)次方,第二个字母l2取3的n(l2)次方,第三个字母l3取5的n(l3)次方,……第k个字母l_k取第k个质数的n(l_k)次方,最后把所有这些乘方乘起来。这样就对每个词定义了一个与它对应的自然数,而且两个不同的词对应的数绝不会相同!但以理和以赛亚哭了……
“巴比伦人用特殊的名称和记号来表未知量,采用了少数几个运算记号,解出了含有一个或较多未知量的几种形式的方程,特别是解出了二次方程,这些都是代数的开端。……问题是巴比伦人在采用数学证明这方面做到什么程度。他们确曾用正确的有系统的步骤,解出了含未知量的颇为复杂的方程。但他们只用语言说出该做的步骤,没有说出做那一步的理由根据什么。几乎没有肯定地说,他们的算术和代数步骤以及几何法则都是根据物理事实、边试边改以及从直观认识得出的结果。如果这些方法行之有效,巴比伦人便认为这就有充分理由继续加以采用。关于证明的想法,依据于决定取舍原则的逻辑结构的思想,以及问题的解在什么条件下存在这些方面的考虑,在巴比伦人的数学里都是找不到的。”这样看来,巴比伦数学的发展程度跟中国古代数学很相似。没有严格的证明和逻辑结构,不考虑解的存在性,是西方之外各文明数学的普遍情况吧?
古今数学思想读书心得体会 3
1974年Bulletin of the American Mathematical Society的一篇书评文章说:“就数学史而论,这是迄今为止最好的一本。”本书着重论述数学思想的古往今来,而不是单纯的史料传记,努力说明数学的意义是什么,各门数学之间以及数学和其他自然科学尤其是力学、物理学的关系是怎样的。作者对一些重要数学分支的历史发展,对一些著名数学家的评论,都很有一些独到的见解,并且写得很引人入胜。
很多中国数学工作者、数学教师和数学爱好者早就希望有一本比较简明的、阐述一些重要数学思想的来源和发展的书。1976年初,北京大学数学系的几位教授与部分教师看到这本书,感到相当满意,就组织人力把它翻译出来。
翻译说明中提到本书也有不足之处,例如忽视了我国的数学成就及其对数学发展的影响。这反映在克莱因的序言中:“为了不使资料漫无边际,我忽略了几种文化,例如中国的、日本的和玛雅的文化,因为他们的工作对于数学思想的主流没有重大的影响。”聊可安慰的是,他对这句话加了一个注释:“中国数学史的一个可喜的叙述敏,已见于李约瑟(Joseph Needham)的'Science and Civilization in China,剑桥大学出版社,1959,卷3,第1~168页。”吴文俊对这种观点肯定是强烈反对的。但克莱因的这话至少说明历史上的西方数学家没有有意识地受到中国数学家的多少影响,而且这也没妨碍他们发展出现代数学。现在有了更多的材料,作为事后的检讨,我们可以重新来问这个问题:古代中国数学家的工作对数学思想的主流有没有产生重大的影响?我想这仍然是个开放问题,希望听到专家的讨论。
序言中还提到有趣的一点:“数学的历史告诉我们,许多科目曾经激起过很大的热情,并且得到最好的数学家的注意,但终于湮没无闻。我们只需要回忆一下凯莱(Arthur Cayley)的名言‘射影几何就是全部几何’,以及西尔维斯特(James JosephSylvester)的断言‘代数不变量的理论已经总结了数学中的全部精华’。”这令人想起诺贝尔物理学奖得主格拉肖(Sheldon Glashow)对超弦理论和克莱因—卡鲁扎理论(Kline-Kaluza theory,1920年代提出的一种意图统一电磁力与万有引力的理论,一直没引起多少关注,大多数物理专业的学生都没听说过这个理论)的幽默评价:“经常有一些弦理论朋友在我耳边鼓吹说弦理论将在未来半个世纪中统治物理,其中爱德华·威顿(Edward Witten)就这么说过。我想把这话纠正一下,把它变成:弦理论会像克莱因—卡鲁扎理论那样统治未来50年的物理,也就是说,它根本不能统治物理。”
序言中说:“课本中的斟字酌句的叙述,未能表现出创造过程中的斗争、挫折,以及在建立一个可观的结构之前,数学家所经历的艰苦漫长的道路。学生一旦认识到这一点,他将不仅获得真知灼见,还将获得顽强地追究他所攻问题的勇气,并且不会因为他自己的工作并非完美无缺而感到颓丧。实在说,叙述数学家如何跌跤,如何在迷雾中摸索前进,并且如何零零碎碎地得到他们的成果,应能使搞研究工作的任一新手鼓起勇气。”这话不仅适用于数学,而且适用于所有科学,以至适用于所有人类事业。正如傅雷在《约翰·克里斯朵夫》的译者献辞中所言:“战士啊,当你知道世界上受苦的不止你一个时,你定会减少痛楚,而你的希望也将永远在绝望中再生了罢!”
古今数学思想读书心得体会 4
在国际上,被誉为“最好的数学史著作”的《古今数学思想》一书,虽出版于20世纪70年代,但其影响却历时30多年而经久不衰,能让读者有常读常新的感受。
一方面,数学给人的印象是独立于人类而存在的冷冰冰的真理之汇集。这个客观性的特点,使得数学并不像文艺领域那样高度表观出创造者张扬的个性;也不像物理学中经常有后人推翻前人观点的情形。但在另一方面,又不得不承认,数学是人类创造出来的思想体系,是人类智慧的结晶。
这两种特性,在别的学科或艺术上表现得并不突出,数学家也不是马上认识到这一点的。在《古今数学思想》的结尾,引用了著名数学家外尔的话:“……‘数学化’很可能是人的一种创造性活动,像语言或音乐一样,具有原始的独创性,它的历史性决定不容许完全的客观的有理化。”外尔说这话时,数学已经走过了5000年的历程!
数学的高度客观性和高度创造性,正是《古今数学思想》的主题思想。在《古今数学思想》这部经典著作中,美国著名的应用数学家、数学教育家莫里斯·克莱因重点关注数学家的思想,描述了数学家在高度抽象的数学世界里开疆拓土的冒险历程。
《古今数学思想》洋洋百万字,气势恢弘,虽不求面面俱到,但已把主流数学的发展脉络阐述得一清二楚。
该书的中译本分为四册:第一册重点讲述古埃及、古巴比伦的原始数学乃至古希腊数学体系的初步建立,突出了欧几里得《几何原本》和阿基米德的工作,兼顾了中世纪和文艺复兴的代数学和数论。第二册可以看成数学中最重要的分支——微积分的发展史,包括解析几何、微分、积分、级数论和微分方程等,特别合乎高校数学教师和大学新生的胃口。第三册重点讲述了19世纪的数学(其中大多数分支也已走进大学一二年级的课堂),比如复变函数、行列式与矩阵、群论、数论、非欧几何、微分几何和代数几何等。第四册则是现代数学的一个概观,包括分析的严密化、实变函数、泛函分析、抽象代数、拓扑学和数理逻辑等。
数学是如何从蒙昧时代到古希腊的繁荣,又如何跨越漫长的中世纪,完成常量数学向变量数学的飞跃的呢?作者告诉我们,这一切都离不开人类经济贸易、自然科学尤其是天文学、物理学等方面研究的需要,也离不开理性主义哲学的影响。但数学自有其发展的内在逻辑,19世纪的三大领域——数系、运算、空间维数——的推广,分别革新了函数论、代数学和几何学;而数理逻辑的发展,又重新使人们思考与数学有关的哲学问题,这是数学的.内部矛盾所推动的。每门科学都有它最基本的矛盾,物理学的基本矛盾是唯象与实证的矛盾,生物学的基本矛盾是简单与复杂的矛盾,数学中的最基本矛盾,则是有限与无限的矛盾。
值得一提的是,克莱因在写这本书时,既没有偏袒纯数学,视应用数学为“二等公民”;也不是宣扬狭隘的实用主义,这一点难能可贵。
在这部巨著中,作者非常注意描述数学家特别是几十位大数学家(如阿基米德、牛顿、欧拉、拉格朗日、高斯等)的创新过程,通过对他们的书信、论文、专著的简要介绍,使读者既领略了数学家的个人魅力、超群智慧,又了解到这种创新活动的历史条件和文化背景,极具可读性。此外,书中还配有数以百计的插图、数以千计的注释、参考文献。
无疑,数学家、数学教师和学生必定可从该书中获益匪浅。在今天普遍流行“快餐文化”的情势下,广大数学爱好者乃至一般读者感受一下经典的魅力,也不无好处。