我要投稿 投诉建议

《分数的基本性质》说课稿

时间:2022-12-14 09:59:25 说课稿 我要投稿

《分数的基本性质》说课稿

  作为一无名无私奉献的教育工作者,就不得不需要编写说课稿,借助说课稿可以让教学工作更科学化。那么你有了解过说课稿吗?下面是小编为大家收集的《分数的基本性质》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

《分数的基本性质》说课稿

《分数的基本性质》说课稿1

  一、说教学内容的创新处理

  《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。

  2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  4.问--ww"1/2=2/4=/4/8"中,你发现什么?

  5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学模式

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)

  这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、4/8这些分数有什么关系?

  (学生会说这三个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8(2)3/8=12/2(3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/51/64/94/612/16

  3/42/320/256/368/18

  三、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

《分数的基本性质》说课稿2

  一、教材分析

  1、 教材内容

  《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。

  2、知识间的联系:

  七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质

  同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。

  二、指导思想与设计理念

  新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。

  根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。

  三、学情分析

  前测:(问卷形式)

  问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。

  2:试着做一做下面这些题比较大小:

  4/7○2/7 1/2○2/4 3/5○9/15

  分析:暂无

  结论:暂无

  四、教学目标及重难点

  教学目标:

  1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

  2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

  教学重点:

  理解掌握分数的基本性质,它是约分,通分的依据

  解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。

  教学难点:

  理解和掌握分数的基本性质。

  解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。

  五、教法学法:

  教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、教学过程

  一、迁移旧知.提出猜想

  1回忆旧知

  活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

  被除数除数=

  通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想:

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

  二、验证猜想,建构新知

  环节1、 看图分类

  下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

  通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。

  环节2、 讨论方法

  师:你是怎么判断它们相等的?

  师:它们相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  通过让学生表述怎么判断它们相等的锻炼学生的表达能力。

  3、研究规律

  第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

  利用研究卡进行研究。

  确定的研究对象

  分子和分母同时乘上或者

  除以一个相同的数

  得到的分数

  研究对象与得到的分数相等吗?

  相等( )不相等()

  猜想是否成立?

  成立( )不成立( )

  充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

  师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

  师:分数的基本性质与商不变性质有什么联系?

  环节4、质疑完善

  3/4 = 3( )/ 4( )

  师:括号中可以填哪些数?

  预设:可以填无数个数

  师:如果只用一个数来表示,填什么数好?

  预设:字母

  师:这个字母有什么特殊要求吗?(0除外)

  得到一个初级的数学模型。3/4= 3X/ 4X(X0)

  让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

  通过这个环节的练习,进行第一次数学建构。

  三、 练习升华

  通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化为分母为12而大小不变的分数。

  3、把2/3和3/4都化为分子为6而大小不变的分数。

  4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

  5、 和 哪一个分数大,你能讲出判断的依据吗?

  四、总结延伸

  师:这节课学了什么?

  师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

  A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)

  在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。

  五、作业p87-1、2

  板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  68

  34

  1216

《分数的基本性质》说课稿3

  《分数的基本性质》一课是学生在充分认识了分数的意义和简单应用的基础上进行教学的。本课的教学目标是:学生通过自己的观察、操作等手段,理解并掌握分数的基本性质,并能根据分数的基本性质对分数进行正确改写。同时,理解分数与除法的内在联系,并能用除法中商不变规律来解释分数的基本性质又是本课教学的一个难点。为了使学生能更好地理解并掌握分数的基本性质,达到本课的教学目标。同时又能为后面的约分、通分和分数的加减法等知识的学习打下扎实的基础。我能根据教材的实际需要,按照新课程的要求精心设计。在实际教学中,我能努力做到以下几点:

  第一、以故事导入,培养学生的学习兴趣。在进行备课时,我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。为此,我设计了一个阿凡提的故事,让阿凡提给三个儿子分田地,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,这样一来,学生学习数学的兴趣必然提高,学习的积极性也会空前高涨。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的田地实际上是一样多的,只不过是平均分的分数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二、发挥集体优势,培养学生的合作能力。为了有效解决教学中“少数学生争台面,多数学生做陪客”的现象,我在教学中也引入了小组合作学习的形式,提高学生学习的主动性,使学生在获取数学知识的同时,形成良好的人际关系,促进学生的全面发展。为此,在观察等分数的变化规律时,我让学生充分展开讨论。大家你一言我一语,一点一滴,逐步发现从左往右,分数的分子分母分别依次乘2、乘4、乘8,而分数的大小不变的变化规律。从而慢慢地引出了分数的基本性质。另外,在故事导入时,我也充分让学生进行讨论,看看三个儿子有没有吃亏。活跃了课堂气氛,提高了学生学习数学的兴趣,取得了不错的教学效果。

  第三、精心设计练习题,提高学生解题能力。数学教学,做题目是其中最重要的一个方面。但传统教学教师往往进行所谓的题海战役,让学生反复做、重复做,这样不仅做累了学生同时也做怕了学生,消磨了学生学习的积极性。所以如何使学生愿做、乐做,同时又能达到教学目标,提高学生的数学综合能力,是摆在我们面前的一个重要课题。为此,在教学《分数的基本性质》时,我也精心设计练习题。首先是题型变化丰富。练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

  最新的小学数学五年级下册说课稿《分数的基本性质》:总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

《分数的基本性质》说课稿4

  一、说教材

  《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。

  二、说学情

  学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。

  三、说教学目标

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。

  过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。

  情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。

  教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。

  教学准备:三张同样大小的长方形纸张,彩色笔

  四、说教学方法

  树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

  五、学法

  有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、说教学过程

  为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:

  1、创境设疑: 回顾旧知,引发思考

  2、自主探究: 动手实践,发现规律

  3、交流归纳:揭示规律,巩固深化

  4、分层精练:多层练习,多元评价

  5、感悟延伸:课堂小结,加深理解

  第一环节:创境设疑

  结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。

  第二环节:自主探究

  通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。

  第三环节:交流归纳

  在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。

  第四环节:分层精练

  这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。

  第五环节:感悟延伸

  通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。

  总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。

《分数的基本性质》说课稿5

  今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。

  一、本课的教学理念有:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。

  二、说教材

  《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:

  1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。

  2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。

  本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。

  三、说教法

  树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。

  四、说学法

  1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。

  五、说教学程序

  一、设疑激趣,引入新课

  教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。

  首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

  这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

  二、自主探索,学习新知

  新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

  1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

  2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?

  学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。

  3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

  师:谁能用一句话把这个变化规律叙述出来呢?

  生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。

  师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

  5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

  结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

  6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。

  教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

  三、分层练习,巩固深化

  只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

  1、涂一涂练习14,第1、7题。

  因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

  2、说一说完成练习14,第8题

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  3、想一想:第5、9、10题(选择一题做为作业)

  在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

  四、畅谈收获,小结全课

  让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

  整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

《分数的基本性质》说课稿6

  一、教材

  1、教学内容:这是义务教育课程标准实验教科书数学人教版五年级下册第四单元P75的内容《分数的基本性质》。

  2、教材与前后知识间的联系:《分数的基本性质》是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。同时又是后面学习约分和通分的理论依据,而约分、通分又是分数四则运算的重要基础,因此这部分内容不仅在单元中具有承前启后的作用,对学生的后继学习也有重要影响。

  3、教材重点:探究分数的基本性质的过程。理解分数的基本性质,能运用分数的基本性质。

  难点:自主探究出分数的基本性质。

  4、知识与技能目标:理解和掌握分数的基本性质,经历探索分数基本性质的过程,培养学生观察、比较、抽象、概括、类推及动手实践能力,进一步发展学生的思维。

  过程与方法目标:是学生经历观察、操作、讨论中,以自主探究、合作分享的教学方式,让学生在交流中进一步完善对分数基本性质的理解。

  情感态度,价值观目标:让学生在主动探索新知的过程中获得成功的体验,体验数学学习的乐趣。

  二、说教学理念:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变学数学为做数学。

  3、改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法

  三、说教法

  主要采用创设情境,引导探究,引导自学,合作探索相结合等教法。

  四、说学法

  学生主要的学习方法是自主发现、操作体验、合作交流,有顺序的观察题、对比分析、概括总结。

  五、说教学过程

  我将创设情境,动手体验、自主探索的教学方式,指导学生运用“操作――发现法”、“观察、归纳”法进行探究。为此,我设计了四个教学环节:

  第一个环节是创设故事情境,激发学生兴趣《分数的基本性质》说课稿《分数的基本性质》说课稿。我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。因此我设计了一个妈妈给三个儿子分苹果的故事。妈妈分别给三个儿子分得苹果的1/2、2/4、4/8,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,看谁分的多,妈妈是不是偏心。这样一来,学生学习数学的兴趣就会提高,学习的积极性也调动起来了。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的苹果实际上是一样多的,只不过是平均分的份数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二个环节是动手体验,形象感知。分数的基本性质,是以分数的大小相等这一概念为基础的。因此我让学生用三张同样大小的长方形纸代替苹果分别折出1/2、2/4、4/8,并用彩色笔涂上颜色。这样既帮助学生复习了分数的意义,又为学习新知识作了准备。接着让学生观察比较涂色部分的大小,再请学生交流,汇报实验过程及结果,使1/2=2/4=4/8这个结论让学生自己“做出来”,而不是老师讲出来。这充分体现以学生为主体,自主探索的教学理念。

  这种教学方式能有效地改变学生原有的一个整数对应一个大小的习惯性思维,初步体会到分数“形变值不变”的独特之处,提高学生的认知能力。

  第三个环节是深入探究,得出规律。这一节环节我提出问题让学生讨论:既然这三个分数大小相等,那这三个分子、分母都不相同的分数之间藏着什么秘密呢?你们能找出它们分子分母各自按照什么规律变化吗?首先,让学生自己观察,把自己的发现在小组内讨论交流,引导学生观察:从左往右得出什么规律,反过来从右往左又得出什么规律。然后请学生再举几个这样的例子,进行交流,有了这些较为丰富的感性认识,再总结出规律。最后学生们会概括得出:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(老师板书)预计学生不会把相同的数中的0除外,因此我会问同时乘和除以0也可以吗?让学生思考并得出0不能作为分母不能作为除数,所以0要除外,最后让学生重新完整的叙述一遍,老师揭示课题。最后提出问题,我们刚才是借助图联系分数的意义来说明分数的基本性质,这个性质能不能根据分数与除法的关系和商不变的性质来说明呢?启发学生用商不变的性质来说明分数的基本性质,沟通新旧知识的联系,从而培养了学生迁移能力。最后师生共同总结本节课的学习方法。

  最后一个环节是巩固新知,拓展延伸。学以致用是探究学习的又一个基本特征《分数的基本性质》说课稿教学反思。因此我精心设计了练习题。首先是题型变化丰富

  练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:分数的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

《分数的基本性质》说课稿7

  各位老师,大家好!今天我说课的内容是课程标准试验教科书数学五年级下册第四单元第三课时“分数的基本性质”。下面我从设计理念,教材,教法,学法,教学过程五个方面进行说课。

  一、说设计理念

  1、以学生的发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容:

  《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。教材在讲解这一知识点时,应注意加强整数商不变性质的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、学情分析:

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  3、教学目标:

  (1)通过教学使得学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

  4、教学重点:理解和掌握分数的基本性质。

  5、教学难点:学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。

  6、教具学具:课件,三张同样大小的长方形纸条、彩笔。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

  1、实际操作法

  指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、直观演示法

  先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  3、启发式教学法

  运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  四、说学法

  1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

  五、说教学过程

  1、复习提问,旧知铺垫

  新课开始,我先板书了一个除法算式 1÷2,然后让学生不计算,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,比如2÷4,4÷8 ,3÷ 6等。然后让学生说说是根据什么想到这些算式的(商不变的规律),商不变的规律的内容又是什么<被除数和除数同时扩大或缩小相同的倍数(0除外),商不变>。

  第二步,我让学生根据分数与除法的关系,把这三个算式写成分数形式,根据三个算式商相等,推导出这三个分数的大小。也就是1/2=2/4=4/8。此时,引导学生:在除法中有商不变的性质,那么分数中又有什么规律呢?今天我们就共同来探讨分数当中的这个问题。这样设计的目的就是让学生通过观察算式和分数的特点,培养学生直觉观察能力,激发学生利用旧知识商不变的规律,探求新知识的兴趣,同时也使学生明确要解决的问题。

  2、动手操作,初步感知

  首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。再观察涂色部分,说说发现了什么?在学生汇报时,说出发现:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,得到1/2;把一张纸条平均分成4份,涂其中2份,得到2/4;把一张纸条平均分成8份,涂其中4份,得到4/8;通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。这一过程的设置,主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

  3、设疑促思,探究新知

  “疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步引导学生观察这三个分数,它们的分子分母都不相同,但是分数的大小却相等,提出疑问:这里面隐藏着什么秘密,有什么规律?接着将发言权充分交给学生,完全开放空间,激发学生思索,并畅所欲言,说出自己发现的规律,(比如:将1/2的分子分母同时乘2得到2/4,将2/4的分子分母同时乘2得到4/8,将1/2的分子分母同时乘4得到4/8;将4/8的分子分母同时除以2得到2/4,将2/4的分子分母同时除以2得到1/2,将4/8的分子分母同时除以4得到1/2共6种)。

  在学生自主探究的基础上,逐步完善学生的说法,适时引导学生将发现的规律总结成一句话:分数的分子分母同时乘或者除以相同的数,分数的大小不变。

  如果学生在此说出了0除外更好,如果没有,在此基础上,提出疑问:“同时”表示什么意思?这个相同的数是任何数都行吗?为什么?那么同学们总结的规律该怎样叙述更完整呢?在学生加上“0除外”完整叙述后,指出:分数的这种变化规律就是我们今天学习的“分数的基本性质”,并借此板书课题“分数的基本性质”。

  这样设计的目的就是培养学生发现问题,自主探究问题的能力,也培养学生的语言表达能力,抽象概括能力和初步的逻辑思维能力。

  另外,我还安排了“听一听”,让学生听5句话并判断对错。

  第一句:分数的分子分母同时乘相同的数(0除外),分数的大小不变。

  第二句:分数的分子分母同时除以相同的数(0除外),分数的大小不变。

  第三句:分数的分子分母同时加上相同的数(0除外),分数的大小不变。

  第四句:分数的分子分母同时减去相同的数(0除外),分数的大小不变。

  第五句:分数的分子分母同时乘或者除以相同的数(0除外),分数的大小不变。

  除了进行“听一听”的练习,还有习题的判断。这样一次次地加深,强化学生对分数的基本性质的理解,反复锤炼学生,达到对知识的更深刻的掌握,也为后面例题的完成奠定厚实的基础。

  4、初步应用,深化新知

  学习分数的基本性质,就是为了在生活中运用它。给你一个分数,能把它化成分母不同而大小相同的分数吗?借此引出例2。让学生读题,并明白做题要求有两个:一是分数大小不变,二是分母相同。在引导学生完成第一个分数后,第二个分数让学生独立完成在书上,然后全班学生交流自己的过程及结果。但是一个例2不足以让学生达到巩固的目的,所以再次安排了和例2题型完全一样的“做一做”,让学生独立思考,写在练习本上,并抽两名学生板演,对出现的问题共同指正。这样的安排是为了把“分数的基本性质”及时练习,反复应用,对学生巩固新知、利用新知都达到好的效果。

  5、多样练习,巩固知识

  在初步应用“分数的基本性质”后,我安排了四个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  6 、全课小结,整理知识

  让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力。同时,教师也在此时进行总结:分数的基本性质和商不变的性质只是在说法上不同,在实质上是相同的,所谓“万变不离其宗”正是如此。通过利用“分数的基本性质”填空,写出许许多多分子分母不同但分数大小相等的分数,体会“以不变应万变”的数学学习方法。最后告诉学生一个小秘密,以后还将学习比的基本性质,它是在“分数的基本性质”的基础上学习的,这也是“用数学学数学”的学习方法。这样安排会更加激发学生学习数学的兴趣,以及探究数学问题的方法。

  最后,我想说,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

《分数的基本性质》说课稿8

  各位老师:

  下午好!我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。

  一、教材分析

  《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。

  二、学情分析

  学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  根据教材分析和学生情况,制定如下教学目标

  三、教学目标

  1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。

  3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。

  依据教学目标,确定教学重难点

  四、教学重难点

  能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数

  理解分数基本性质的含义,掌握分数基本性质的推导过程。

  五、教学方法

  根据本节课的教学内容和教学目标采用讲授法,小组合作学习。

  六、教具学具准备

  准备大小相等的圆形纸片,水彩笔等。

  七、教学过程:分六个环节

  (一)故事设疑,揭示课题。我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的14,沙和尚吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。

  (二)合作探索,寻找规律。请同学们观察14,28,416 ; 3|4,68,1216这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。

  (三)巩固练习。

  练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母 ( );23=()18621=2()等这样的题,进行练习。

  (四)梳理知识,沟通联系。

  小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

  然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。

  (五)多层练习,巩固深化。

  我将设计从巩固到思维拓展三个层次的练习。

  1.

  2. (1)把5/6和1/4化为分母为12而大小不变的分数。

  (2)把2/3和3/4化为分子为6而大小不变的分数。

  3.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上( )。

  (六)全课小结

  现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?

《分数的基本性质》说课稿9

  把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。

  分数的基本性质

  1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。

  2.培养学生观察、分析、思考和抽象、概括的能力。

  3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。

  教学过程

  一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

  二、导入新课例

  1.用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

  (2)观察 例2.比较 的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质

  1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。

  2、为什么要零除外?

  3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

  (1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在( )里填上适当的数。

  4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。

  六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

  分数的基本性质(说课稿)

  理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。

  分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

  学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。

  分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。

  在教学中,采用小组合作学习的办法,通过给3张纸涂色、折叠、观察、探索进行规律性的总结。在进行小组汇报时,教师揭示了知识间的联系,鼓励学生用不同的理解方法、不同角度进行汇报分数基本性质的可行性,为学生的思维留下了创造空间。在学生总结规律后,为了加深对分数的性质的理解,还可以让同学举一些符合规律的例子进行说明。教学实践中,要注重培养学生揭示知识间的联系、探索规律、总结规律的能力。

《分数的基本性质》说课稿10

尊敬的各位领导,老师们:

  大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材内容及学生的认知水平,我制定了以下教学目标:

  1..使学生理解与掌握分数的基本性质。

  2.培养学生观察、比较、分析、概括等方面的能力。

  三、教法和学法(课件)

  为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。

  新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。

  四、教学过程(课件)

  结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。

  (二)、动手操作、初步感知(课件)

  我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:

  (三)比较归纳、揭示规律(课件)

  (1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。

  (2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。

  (3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。

  (4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。

  课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。

  五、板书设计

  说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《分数的基本性质》说课稿11

尊敬的各位评委,各位老师:

  大家好!我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:

  1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2、(认知目标)理解和掌握分数的基本性质。

  3、(能力、情感目标)培养学生观察、分析、推理的能力。

  教学重点:理解和掌握分数的基本性质。

  教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?

  本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。

  我设计的具体教学过程如下:

  第一环节:激趣引入,凸显信息技术的趣味性。

  “好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)

  第二环节:探索规律,凸显信息技术的直观性和时效性。

  1、提出猜想。

  学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。

  再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。

  (“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)

  2、完善猜想。

  在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。

  这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。

  (在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)

  3、验证猜想,得出规律。

  学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。

  最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)

  第三环节:游戏巩固,思维提升,凸显信息技术的交互性。

  学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)

  接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的'分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。

  第四环节:提炼方法,积累基本的数学活动经验。

  师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。

  第五环节:网上交流,课内向课外延伸。

  一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。

  最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!

《分数的基本性质》说课稿12

  我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。

  本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。

  本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。

  以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。

  根据以上分析。我认为本节课的教学目标有以下几点:

  1、经历探索分数的基本性质的过程,理解分数的基本性质。

  2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。

  3、培养学生在合作中逐步形成评价与反思的意识。

  4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

  我认为本节课的教学重点是:理解、掌握分数的基本性质。

  难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。

  下面说说我的教学过程:

  我将本课的教学设计以下几个环节,

  一、设疑激趣,引入新课

  教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。

  首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

  这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

  二、自主探索,学习新知

  新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

  1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

  2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

  学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)

  3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

  师:谁能用一句话把这个变化规律叙述出来呢?

  生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。

  师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

  5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

  结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

  6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。

  教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

  三、分层练习,巩固深化

  只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

  1、涂一涂练习14,第1、7题。

  因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

  2、说一说完成练习14,第8题

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  3、想一想:第5、9、10题(选择一题做为作业)

  在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

  四、畅谈收获,小结全课

  让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

  整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

《分数的基本性质》说课稿13

  大家好,今天,我说课的内容是人教版实验教材五年级下册的《分数的基本性质》。我将从教材、教学目标、教学重点和难点、教学过程与板书设计等方面做一个说明,首先是说教材。

  《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

  接下来说说学情分析。学生在三年级上学期已经初步认识了分数,还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

  本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  1、知识与能力目标:理解和掌握分数的基本性质,培养观察、比较及动手能力,进一步发展思维。

  2、过程与方法目标:经历发现问题、探究问题、解决问题的全过程,体验解决问题策略的多样性。

  3、情感态度与价值观目标:在探究活动中,获得成功体验,建立自信心,感受数学的严谨性。

  根据教学目标和学生情况,我把本课的重点设定为:理解、掌握分数的基本性质。难点设定为:发现和归纳分数的基本性质,并用它解决相应的问题。

  本着“以学生发展为本”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法、组织练习法组织教学。

  动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  为了全面准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发猜想 ——自主探索,寻找规律——比较归纳,揭示规律——分层练习,巩固深化——课堂小结 ,布置作业”五个环节。

  (一) 创设情境,引发猜想。上课开始,我引入故事:从前有座山,山里有座庙,庙里住着一个慈母般的老和尚和三个调皮的小和尚,小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚烙了三张同样大小的饼想分给小和尚吃。还没给呢,小和尚就开始要了。第一个和尚说:“我要一块儿”;第二个和尚说:“我要两块儿”;第三个和尚说:“不行不行,我得多要点儿,我要四块儿”。 老和尚听了他们的话,二话没说,就把第一长饼平均分成四块儿,取其中的一块儿给了第一个和尚;接着又把第二张饼平均分成八块儿,取其中的两块儿给了第二个和尚;最后把第三张饼平均分成十六块儿,取其中的四块儿给了第三个和尚。故事讲完了,老师有一个问题,三个小和尚谁的饼多,谁的饼少,你知道吗? 先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

  (二) 自主探索,寻找规律。

  1、小组合作,验证猜想。

  这只是大家的猜想,究竟哪个和尚吃得多呢?亲自分一分,验证你们的猜想。

  2、既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?

  引导学生得出:这三个分数是相等关系,分数的分子和分母变化了但分数的大小不变。

  3、老和尚把三张大小一样的饼分给小和尚一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=12/16。

  (三)比较归纳,揭示规律。

  1、 通过演示,学生小组合作,集体交流,归纳性质。

  2、师生共同总结规律,找出性质中的关键词,然后齐读3遍,注意关键的字词(同时,0除外)要重读。

  3、现在,大家知道老和尚是运用什么性质分饼了吗?

  4、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。

  (四)分层练习,巩固深化。

  根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。 其次是稍有变动的,需要结合分数与除法关系完成的变式练习。

  (五)课堂小结,布置作业。

  有层次的练习之后,我会及时引导学生回忆本节课学习了哪些内容,让学生说说有什么收获。学生在说的过程中进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。作业也是必不可少的,针对今天学习的内容,我布置了三道题,有目的地让学生通过练习巩固所学知识。

  1、填上合适的数,说说你填写的根据.

  1/3 =()/6 10/15 =()/3 1/4 = 5/()

  2、说一说下面各式运用分数的基本性质是否正确

  5/24=5×2/24÷2=10/12 ( )

  4/9=(4÷2)/(9÷3)=2/3 ( )

  13/18=13+2/18+2=15/20 ( )

  3、选择你喜欢的一道题来做

  (1) 与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

  (2) 9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

  好的板书是一篇文章浓缩了的精华,是直观的教学方法,是课堂教学中师生双边活动的缩影,能直观形象地反映课堂教学的全过程。根据本节课的内容,我设计了如下板书:

  分数的分子、分母同时乘以或除以相同的数,(0除外)分数的大小不变。这叫做分数的基本性质。

  我的说课到此结束,谢谢大家!

《分数的基本性质》说课稿14

  一、说教材

  《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?

  4.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

  三、说教法

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、3/6、 4/8这些分数有什么关系?

  (学生会说这四个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=3/6=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/5 1/6 4/9 4/6 12/16

  3/4 2/3 20/25 6/36 8/18

《分数的基本性质》说课稿15

  一、说教学理念

  1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容

  《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  3、教学目标:

  (1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

  教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

  1、实际操作法

  指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、直观演示法

  先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  3、启发式教学法

  运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  四、说学法

  1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

  五、说教学过程

  (一)、新知铺垫

  (二)、新知导入

  (三)、新知探究

  (四)、新知探究

  (五)、新知训练

  (六)、新知应用

  (七)、新知强化

  (八)、新知小结

  1、新知铺垫和导入

  上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。

  (设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。

  2、新知探究

  (1)、动手操作、形象感知

  首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。

  (设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

  (2)、观察比较,探究规律

  首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。

  (设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。

  3、新知训练

  在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。

【《分数的基本性质》说课稿】相关文章:

分数的基本性质说课稿07-14

《分数的基本性质》说课稿05-07

关于《分数的基本性质》说课稿05-07

《分数的基本性质》说课稿范文04-12

分数的基本性质说课稿(精选12篇)07-15

苏教版《分数的基本性质》说课稿范文05-21

关于《分数的基本性质》说课稿范文05-07

《分数的基本性质》说课稿(精选5篇)05-07

《比的基本性质》说课稿03-06

五年级《分数的基本性质》说课稿05-21