我要投稿 投诉建议

三角形内角和说课稿

时间:2022-09-22 08:36:08 说课稿 我要投稿

三角形内角和说课稿(通用12篇)

  作为一位优秀的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。我们该怎么去写说课稿呢?下面是小编帮大家整理的三角形内角和说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和说课稿(通用12篇)

  三角形内角和说课稿 篇1

各位评委、老师:

  大家好!

  我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

  一、本节课在新一轮课程改革下的设计理念:

  数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

  二、教材分析与处理:

  三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

  三、学生分析

  处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

  四、教学目标:

  1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

  2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

  3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

  4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

  五、重难点的确立:

  1.重点:三角形的内角和定理探究与证明。

  2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

  六、教法、学法和教学手段:

  采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。

  采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

  教学过程设计:

  一、创设情境,悬念引入

  一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

  具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

  二、探索新知

  1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

  (将拼图展示在黑板上)

  2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

  3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

  4.学以致用,反馈练习

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,则∠C=?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

  解:设∠A=x°,则∠B=3x°,∠C=5x°

  由三角形内角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

  第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

  通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

  5.巩固提高,以生为本

  (1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

  (2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

  本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

  6.思维拓展,开放发散

  如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

  本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

  三、归纳总结,同化顺应

  1.学生谈体会

  2.教师总结,出示本节知识要点

  3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  四、作业:

  1。必做题:习题3.1第10、11、12题

  2.选做题:习题3.1第13、14题

  五、板书设计

  三角形内角和

  学生拼图展示

  已知:

  求证:

  证明:

  开放题:

  三角形内角和说课稿 篇2

  一、说教材

  1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。

  2、教材简析

  三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。

  3、教学目标

  根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。

  (1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。

  (2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。

  (3)情感目标:使学生经历探究的过程,体会与他人合作交流的乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。

  4、教学重点与难点。

  《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。

  5、教学准备

  为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。

  二、说教法学法

  根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。

  本节课在学生学习方法的引导上尽量体现:

  ①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。

  ②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。

  ③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。

  三、学生情况分析

  学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。

  四、说教学流程

  为了达到本节课的教学目标,我这样设计教学流程:

  1、设疑导入。

  为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:

  (1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。

  (2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。

  2、动手操作,自主探究。

  为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。

  3、巩固新知

  本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。

  五、板书设计

  板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。

  三角形内角和说课稿 篇3

  一、说教材

  “三角形的内角和”是义务教育课程标准实验教材(人教版)四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

  为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

  1、知识目标:知道三角形内角和是180°。

  2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。

  3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

  教学重点:三角形内角和是180°的实际应用。

  教学难点:探索三角形的内角和是180°

  二、说教法

  新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。

  三、说学法

  学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

  “将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

  四、说教学程序

  1、谈话激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以前面学过的知识“三角形的分类”为切入点,让学生叫出各类三角形的名称{激趣},随后提出挑战——画一个很特殊的三角形{即含有两个直角的三角形},结果没有没有一个学生能画出来,为什么呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。

  2、猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

  3、验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折——看一看。

  4、巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:设计让学生用所学的知识说一说为什么画不出含有两个直角的三角形的问题,从中培养学生应用意识和解决问题的能力;又如:让学生判断有两个直角三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性。再如:根据三角形两个角或一个角的度数或三角形的特征求出三角形的三个角的度数{具体在练习第一、第二、第三、第四题及游戏中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

  5、拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

  总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

  三角形内角和说课稿 篇4

  一、说教材

  《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  二、说学情

  本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。

  三、说教学目标

  根据教材的特点,我制定出本节课的三维目标分别是:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。

  2、在操作活动中,培养学生的合作意识、动手实践能力,发展学生的空间观念,培养学生自主探究能力。

  3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。

  四、说教学重点:

  探究和发现三角形内角和是180°

  五.说教学难点:

  用不同方法探究、验证三角形的内角和是180°

  六.说教学准备

  课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。

  七、说教法学法

  这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:

  (1)、引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。

  (2)、引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时

  ,自己想办法进一步探究.

  (3)、引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程.

  (4)、引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。

  八、说教学流程

  学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:

  1、创设情景,以情激趣

  首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。

  2、 合作交流

  探究新知

  这一环节的设计我是分4部分完成的:

  (1).量一量

  我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于180度、180度或小于180度不同的结果。在交流汇报的结果时会发现答案不统一,无法判断大小三角形内角和谁大谁小的问题。此时学生心中产生了更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”这一思维的碰撞,再次激起学生的学习探究热情,自主产生探究欲望,强烈的求知欲和好胜心让学生跃跃欲试,此时我顺水推舟,引导他们用拼一拼、折一折等不同的方法探究不同的三角形的内角和是多少度。

  (2)、拼一拼、折一折

  学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180

  度时,我充分调动学生学习的积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。

  (3).得出结论、加深内化

  学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是180度,并自主得出结论:三角形的内角和是180度。然后引导他们:用科学、简练的数学语言表述探究方法学生汇报并演示三角形内角和180度探究过程。并借助多媒体在大屏幕上演示其中几种基本的剪拼、折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。

  (4).揭示课题、解决问题

  在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的内角和都是

  180度。在这个环节中,我自始至终充当教学研究的组织者,引导者,参与者。前后组织了几次自主探究活动,让学生在保持高度学习热情与欲望的探究过程中,始终以愉悦的心情亲身经历和体验知识的形成过程。培养了学生的探究能力、分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。

  3、运用新知、解决问题

  本环节我设计了以下几种题型:1、推算题,2、辨析,3、思考题,4、拓展题,这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。

  4、了解历史 、全课小结

  这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生学习所提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!

  三角形内角和说课稿 篇5

  一、说教材

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1.通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.

  2.通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想.

  3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的内角和是180°.

  二、说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°.

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力".四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式.

  三、说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验.

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角".( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题.

  【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现".

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】引导学生提出合理猜测:三角形的内角和是180°.

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼.

  (3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°.

  (4)画:根据长方形的内角和来验证三角形内角和是180°.

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°.从长方形的内角和联想到直角三角形的内角和是180°.

  【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法.在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系.在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥.

  深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变.)

  结论: 角的两条边长了, 但角的大小不变.因为角的大小与边的长短无关.

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小.这样多次变化, 活动角越来越大, 而另外两个角越来越小.最后, 当活动角的两条边与小棒重合时.

  结论:活动角就是一个平角180°, 另外两个角都是0°.

  【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响.教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明.

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因.

  (五)应用

  1.基础练习:书本练习十四的习题9,求出三角形各个角的度数.

  2.变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3.(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4.智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】习题是沟通知识联系的有效手段.在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数.

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系.

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识.

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和.教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建.

  说课板书设计:

  三角形内角和

  引入:

  猜测:

  验证:

  量——算

  撕——拼

  折——拼

  三角形内角和说课稿 篇6

  说教材

  《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

  说学情

  一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。

  说教学目标

  根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:

  知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

  情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

  说教学重难点

  根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

  说教法

  为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

  我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。

  说教学内容

  为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:

  (一)创设情境,导入新课

  为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。

  多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

  (二)自主探究,感受新知

  首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

  接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

  通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。

  最后引导学生总结出三角形的内角和是180°。

  以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。

  (三)巩固练习,强化知识

  我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。

  (四)课堂小结

  我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。

  (五)布置作业

  针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。

  说板书设计

  一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。

  以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)

  三角形内角和说课稿 篇7

  一、说教材

  1、说课内容

  今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。

  2、教材分析

  《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。

  教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

  3、教学目标

  根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

  知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

  情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

  4、教学重点难点

  根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

  5、教学具准备

  每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。

  二、说教法学法我要说的第二块是教法学法。

  新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。

  因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。

  在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。

  三、说教学流程

  根据我对教材的把握和对学情的了解,设计了5个环节展开教学。

  四、创设情境,发现问题

  一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”

  五、合作交流,引导探究

  (1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

  (2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

  (3)记录小组测量结果及讨论结果

  实验名称:三角形内角和

  实验目的:探究三角形内角和是多少度。

  实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。

  (4)学生汇报量的方法,师请同学评价这种方法。

  师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

  (一)剪拼法

  学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

  师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

  (二)折拼法

  学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

  这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

  (三)演绎推理法

  (借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

  师:你认为这种方法好不好?我们看看是不是这么回事。

  (演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

  师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

  (学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的.发展而言,探究的过程比探究获得的结论更有价值。)

  学生用的方法会非常多,但它们的思维水平是不平行的。

  直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

  拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

  前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

  六、训练提高

  使用课本两道题,以及以下习题

  (1)∠1=35°∠2=47°∠3=()

  (2)∠1=50°∠2=40°∠3=()

  (3)∠1=20°∠2=45°∠3=()

  按着难易程度逐渐提高,巩固新知。

  七、数学文化

  帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  八、课堂总结

  我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

  九、反思

  整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。

  三角形内角和说课稿 篇8

  一、说教材和新课标

  (包括教材、新课标和教学目标)

  1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于

  180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。

  2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。

  基于新课标的要求,本课的教学目标是:

  1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;

  2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;

  3、培养学生自主学习。

  二、说教法和学法

  在本课题的教法和学法主要体现在以下两方面:

  1、突出学生作为学习主体的作用

  学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。

  2、让学生在创造中学习,在学习中创造

  学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!

  三、说教学过程

  为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。

  接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。

  为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。

  接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。

  四、教学演示

  1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;

  2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;

  3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);

  4、练习:判断题

  ①钝角三角形的内角和大于直角三角形的内角和。

  ②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。

  ③直角三角形中的两个锐角和等于90°

  5、学习求三角形中角的度数的方法……

  三角形内角和说课稿 篇9

  一、 说教材

  三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  二、说学情

  本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。

  因此,我确定本节课的教学目标是:

  教学目标:

  知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。

  过程与方法:

  发展学生动手操作、观察比较和抽象概括的能力。

  情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。

  教学重点:

  学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。

  教学难点:

  三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。

  三、说教法、学法

  整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。

  《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。

  四、说教学过程

  基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  第一, 猜测。

  通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。

  第二,动手操作,探究新知。

  动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。

  这一环节我设计为以下三步:

  1、操作感知。

  组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。

  2、小组合作。

  针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。

  3、交流反馈,得出结论。

  学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。

  第三是灵活应用,拓展延伸。

  揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。

  1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。

  2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。

  3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。

  这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。

  本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。

  板书:

  三角形的内角和

  猜测验证结论应用

  三角形内角和等于180。

  三角形内角和说课稿 篇10

  一、说教材

  说课内容:人教版义务教育课程标准实验教科书数学第八册第85页例5——三角形的内角和。

  “三角形的内角和”是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,是掌握多边形内角和及解决其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律对学生的后继学习具有重要意义。在此之前,学生已经掌握了三角形的概念、分类,熟悉了锐角、直角、钝角、平角这些角的知识,也可能有部分学生已经知道三角形的内角和是180°,但“知其然而不知其所以然”。所以本课的重点不在于了解,而在于验证和应用,同时发展学生的空间观念和思维能力、解决问题的能力。

  (一)教学目标

  1、知道三角形的内角和等于180°,能运用这一规律进行有关的计算。

  2、通过观察、操作和实验探索等活动,发展学生的空间观念,培养学生的思维能力。

  3、经历三角形的内角和等于180°这一知识的导出过程,学会学习几何知识的方法和科学探究的方法,体验数学学习的成功。

  (二)教学重点

  让学生经历三角形的内角和的导出过程,能运用这一规律进行有关的计算。

  (三)教学难点

  验证三角形的内角和等于180°。

  二、说教法和学法

  “要让学生动手做科学,而不是用耳朵听科学”是新课标的一个重要理念。在本课的设计上我着力通过引导学生经历猜想、实验、验证、归纳、运用、拓展等过程,牢固掌握新知。具体的策略是:

  (一)创设问题情景,激发学生学习兴趣

  通过用一个富有趣味性的动画情境,让学生在愉悦的对话中复习旧知,激发兴趣,调动他们探索的愿望。

  (二)猜想、实验、验证,经历知识的形成过程

  为了使学生自主探究发现三角形的内角和是180°,我安排了两个环节,一是猜测三角形的内角和大约是180°,二是让学生通过算一算、拼一拼、折一折等方法验证这一结论。

  (三)练习层次分明,呈现方式多样,夯实学生双基。

  三.说教学程序设计

  依据以上的分析,我的教学流程大致分为四个步骤。

  (一)创设情境,激发兴趣,复习导入

  “兴趣是最好的老师”,营造一个趣味盎然的课堂学习环境,能有效地吸引学生参与学习过程。课开始,通过课件演示向学生提出问题:你们认识这些三角形吗?(课件闪现角)这是三角形的……?(角)每个三角形有几个角?这一情景巧妙地重现知识,改变了复习的方式,再引出三角形的“内角”及“内角和”的概念,为学生进一步探究三角形的内角和扫除了障碍。接着安排猜角的游戏,让学生拿出课前准备的锐角、直角、钝角三角形,报出其中两个角的度数,老师马上报出第三个角的度数,并做好板书记录。在好奇心的驱动下,学生很快可以进入愤悱状态,教师便可趁此导入新课并板书课题:三角形的内角和

  板书:三角形∠1∠2∠3内角和30°40°110°70°80°30°90°75°15°

  (二)自主探究,操作验证

  让学生做数学就要让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。教学中我重视留给学生充分进行自主探索和交流的时间和空间,让学生经历猜想——验证的过程,在操作、探索中发现,形成结论。

  1、猜想

  首先我会向学生提出:“请你仔细观察这个表格,你发现了什么?”让学生自主发现三角形的内角和是1800这一规律。

  2、验证

  然后鼓励他们:“你发现的这个结论是不是正确的呢?你能不能想办法验证?”恰当的提问放飞了学生的思维。学生经过独立思考与合作交流,预计能反馈出计算、拼、折等几种验证的方法。教师在集中反馈时必须向学生明确以下几点:

  (1)用计算的方法,可能会因为测量有误差而导致计算的结果有误差。完成板书。

  三角形∠1∠2∠3内角和30°40°110°180°70°80°30°180°90°75°15°180°

  (2)用拼一拼的方法:要注意为每个内角注上编号再拼,防止搞错,同时借助课件加以说明。

  (3)用折一折的方法:要注意第一步折的折痕要和底边平行,而且是三角形的中位线。并用课件演示。

  3、总结概括结论并板书:三角形的内角和是180°,然后指导学生看书质疑,并追问:“如果知道三角形的其中两个角的度数,怎样求第三个角度数?”以强化结论的运用。

  (三)巩固运用,夯实双基

  为了使学生更好地巩固和应用这一结论,我设计了以下的题组:(课件展示)

  1、猜一猜

  猜一猜小动物背后藏着的角的度数吗?

  你知道这个游戏的秘密吗?

  这一题是用图示的方法,直接口算出三角形的第3个角的度数。

  2、书本第85页的做一做

  在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  第二题是用文字的呈现方式,让学生计算出三角形的第三个角的度数。这道题我板书在黑板上,目的是突出解题的规范。

  3、判断、改错

  说明利用三角形内角和可以检测三角形的角的量度结果。

  4、书本第88页的第9题

  这一题是解决特殊三角形的角的计算问题。

  5、书本第88页的第10题

  第5题是运用“三角形的内角和是180°”这一结论解决生活中的实际问题。

  这一题组注意结合学生的认知规律,具有较强的针对性和层次性,注意到呈现方式的多样性,让学生从“会”过渡到“熟”,从“熟”过渡到“活”。

  (四)总结反馈,拓展延伸

  课末,我会让学生结合板书,回顾本节课所学的知识,引导学生对从练习中反馈出来的一些易错、易混的知识加以辨析、强调,进一步加深学生对新学知识与技能的理解与掌握。

  最后再出示两道拓展性练习题:

  1、拓展延伸

  帮角找朋友:每组卡片中,哪三个角可以组成三角形?

  2、思考题:

  根据三角形的内角和是180°,你能求出下面图形的内角和吗?

  引导学生通过解决这些拓展性的练习,渗透数学的化归思想,再一次强化对学习数学的方法的认识。

  通过设计多层次的练习,放缓了新知的坡度,既有基本练习,巩固练习,也有发展性练习,努力体现不同层次的学生达到不同的教学目标。同时注意改变练习的呈现方式,使学生在轻松愉悦的气氛中学会新知,形成技能。

  板书设计:三角形的内角和

  三角形内角和说课稿 篇11

  今天我说课的内容是北师大版小学数学四年级下第二单元“认识图形”中探索与发现部分的“三角形的内角和”这部分知识。本课指导学生通过直观操作的方法,探索并发现三角形内角和等于180°。让学生在实验活动中,体验探索的过程和方法。能使学生应用三角形内角和的性质解决一些简单问题。在认真学习《数学课程标准》,深入钻研教材,充分了解学生的基础上,我准备从以下几方面进行说课。

  一、说教材

  “认识图形”是“空间与图形”的重要内容之一。学生在此之前已经对三角形有了一定的认识。因为教材的小标题为“探索与发现”,所以我主要是通过让学生在自主探索中学习本课内容。先让学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

  结合学生已经有的知识经验,对于本课我确立了以下几个教学目标:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。已知三角形两个角的度数,会求第三个角的度数。

  2、渗透猜想--验证--结论--运用--引申的学习方法,培养学生动手操作和合作交流的能力,培养学生的探究意识。

  3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣,体验学习数学的快乐。

  把教学重难点设定为验证三角形的内角和是180°,并学会应用。

  二、说教法学法

  本堂课我采取了“开放型的探究式”教学模式,运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,使学生全面参与、全员参与、全程参与,真正确立其主体地位。让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。在在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

  三、说教学过程

  本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。因此我依据学生的认知规律将教学过程分为以下几个环节:

  (一)复习旧知

  由于学生在此之前已经学过了一些关于三角形的一些知识,为了让学生在学习上有一定的连贯性,我首先设计了一个问题“你对三角形有哪些了解?”,让学生在复习当中加深对三角形的认识,自然引出“内角”一词,为后面的探索奠定基础。

  (二)创设情境,激趣导入

  教育家叶圣陶先生也曾经说过:“兴趣是最好的老师。”因此,本节课一开始,我采用故事导入,用两个大小不同的三角形,创设一个拟人化的对话情境,“大”对“小”说:“你看我个大所以我的内角和一定比你大。”“小”问到:“那可不一定,我虽然个小可我的内角和不一定比你小啊!”两人争论不休,请同学们帮忙解决问题,引入今天所要学习的内容。在这一环节中把问题隐藏在情景之中,将会引起学生迫不及待探索研究的兴趣,引发学生的思考,要比较内角和的大小,就要知道各自的内角的度数,从而引导学生开始对“三角形的内角和是多少”进行思索,引发学生探知欲望,也为下一步的教学架桥铺路。

  (三)动手操作,自主探究

  由于学生对三角形的内角和已经产生了一定的求知欲,在此我首先设计了一个问题“什么是三角形的内角和?怎样才能求出三角形的内角和?”从而引起学生的继续思考。在此问题提出的基础上,我又分别设计了两个活动。

  活动一:让每组同学分别画出大小,形状不同的若干个三角形,并分别量出三个内角的度数,并求出它们的和。填入记录表中。活动二:让学生分组汇报己的记录表,阐述发现了什么。

  由于本节课是一节发现探索的课程,所以我在此环节进行了这样的设计。通过这样的活动,引导学生从“实际操作”到“具体感知”,再从“具体感知”到“抽象概念”,让学生初步理解三角形的内角和是180度。在量一量、算一算中产生猜想,在探索中发现,在活动中思考,经历三角形内角和的研究方法,体会活动结果,进一步激发学生的学习兴趣,同时也培养了学生与他人合作交流的意识。

  (四)验证结论

  学生完成探究活动之后,已经知道了三角形内角和。我做了这样的提问“除了测量计算出三角形内角和,你还有什么方法可以验证三角形内角和是180??”学生可以通过:量一量、拼一拼、折一折的方法,发现三角形的内角和是180度。体会验证三角形内角和的数学思想方法,加深学生对这部分知识的记忆。

  (五)巩固练习

  在巩固练习中,我遵循由易到难的规律,设计了分层训练。第一层:基本训练,通过练习明确,会求简单的三角形内角和。第二层:综合训练,通过学生观察、分析,从纷繁复杂的条件中获取有价值的信息解决问题。最后一道实践活动让学生根据三角形的内角和探索经验去探索四边形的内角和,对知识进行迁移,使学生得到了发展。

  (六)总结评价

  回顾这节课,评价一下自己:你学到了什么知识?学习的快乐吗?你觉得小组里谁在哪方面比较出色或者你有什么建议想对他说的?

  三角形内角和说课稿 篇12

  一、说教材

  “三角形的内角和”是人教版小学数学四年级下册第五单元第3节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

  二、说学情

  一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。

  本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

  从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  三、说教学目标

  根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。

  【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  【过程与方法】经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

  【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

  五、说教法学法

  新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。

  六、教学过程

  (一)导入新课

  首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

  根据视频中三角形的对话,顺势引出题目——三角形的内角和。

  设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

  (二)新课探究

  接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

  接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

  通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。

  此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。

  (三)巩固提高

  接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

  练习题组设计如下:

  第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?

  设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

  (四)小结作业

  在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?

  这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识

  在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?

  这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。

  七、板书设计

  为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。

《三角形内角和说课稿(通用12篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【三角形内角和说课稿】相关文章:

《三角形内角和》说课稿07-13

《三角形的内角和》说课稿范文03-12

三角形内角和说课稿范文03-16

《三角形的内角和》优秀说课稿03-13

三角形内角和说课稿模板04-20

《11.2三角形内角和》说课稿范文03-20

《三角形内角和》说课稿范文(通用11篇)07-30

《三角形内角和》说课稿范文(通用5篇)03-17

多边形的内角和说课稿11-06

在线咨询

三角形内角和说课稿(通用12篇)

  作为一位优秀的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。我们该怎么去写说课稿呢?下面是小编帮大家整理的三角形内角和说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形内角和说课稿(通用12篇)

  三角形内角和说课稿 篇1

各位评委、老师:

  大家好!

  我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

  一、本节课在新一轮课程改革下的设计理念:

  数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

  二、教材分析与处理:

  三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

  三、学生分析

  处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

  四、教学目标:

  1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

  2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

  3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

  4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

  五、重难点的确立:

  1.重点:三角形的内角和定理探究与证明。

  2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

  六、教法、学法和教学手段:

  采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。

  采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

  教学过程设计:

  一、创设情境,悬念引入

  一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

  具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

  二、探索新知

  1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

  (将拼图展示在黑板上)

  2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

  3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

  4.学以致用,反馈练习

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,则∠C=?

  解:∵∠A+∠B+∠C=180°(三角形内角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

  解:设∠A=x°,则∠B=3x°,∠C=5x°

  由三角形内角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

  第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

  通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

  5.巩固提高,以生为本

  (1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

  (2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

  本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用.能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

  6.思维拓展,开放发散

  如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

  本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

  三、归纳总结,同化顺应

  1.学生谈体会

  2.教师总结,出示本节知识要点

  3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  四、作业:

  1。必做题:习题3.1第10、11、12题

  2.选做题:习题3.1第13、14题

  五、板书设计

  三角形内角和

  学生拼图展示

  已知:

  求证:

  证明:

  开放题:

  三角形内角和说课稿 篇2

  一、说教材

  1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。

  2、教材简析

  三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。

  3、教学目标

  根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。

  (1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。

  (2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。

  (3)情感目标:使学生经历探究的过程,体会与他人合作交流的乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。

  4、教学重点与难点。

  《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。

  5、教学准备

  为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。

  二、说教法学法

  根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。

  本节课在学生学习方法的引导上尽量体现:

  ①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。

  ②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。

  ③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。

  三、学生情况分析

  学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。

  四、说教学流程

  为了达到本节课的教学目标,我这样设计教学流程:

  1、设疑导入。

  为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:

  (1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。

  (2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。

  2、动手操作,自主探究。

  为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。

  3、巩固新知

  本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。

  五、板书设计

  板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。

  三角形内角和说课稿 篇3

  一、说教材

  “三角形的内角和”是义务教育课程标准实验教材(人教版)四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

  为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

  1、知识目标:知道三角形内角和是180°。

  2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。

  3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

  教学重点:三角形内角和是180°的实际应用。

  教学难点:探索三角形的内角和是180°

  二、说教法

  新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。

  三、说学法

  学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

  “将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

  四、说教学程序

  1、谈话激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以前面学过的知识“三角形的分类”为切入点,让学生叫出各类三角形的名称{激趣},随后提出挑战——画一个很特殊的三角形{即含有两个直角的三角形},结果没有没有一个学生能画出来,为什么呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。

  2、猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。

  3、验证{自主探索}:学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折——看一看。

  4、巩固内化:俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:设计让学生用所学的知识说一说为什么画不出含有两个直角的三角形的问题,从中培养学生应用意识和解决问题的能力;又如:让学生判断有两个直角三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性。再如:根据三角形两个角或一个角的度数或三角形的特征求出三角形的三个角的度数{具体在练习第一、第二、第三、第四题及游戏中都有体现},从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。

  5、拓展创新:数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

  总之,本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。

  三角形内角和说课稿 篇4

  一、说教材

  《三角形的内角和》是人教版小学四年级下册的内容,“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  二、说学情

  本节课的教学是在学生已经认识了三角形、平角,学会测量角的度数及三角形的分类、已具备一定的探究经验和技能的基础上探索和发现三角形内角和等于180度,为理解三角形三个内角的关系以及在今后学习多边形内角和打下基础。

  三、说教学目标

  根据教材的特点,我制定出本节课的三维目标分别是:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形内角和是180°。能运用新知识解决问题。

  2、在操作活动中,培养学生的合作意识、动手实践能力,发展学生的空间观念,培养学生自主探究能力。

  3、激发学生主动学习数学的兴趣,体验知识的形成过程,实现自主发展。

  四、说教学重点:

  探究和发现三角形内角和是180°

  五.说教学难点:

  用不同方法探究、验证三角形的内角和是180°

  六.说教学准备

  课件、学生准备不同类型的三角形各一个,长方形或正方形、剪刀、量角器。

  七、说教法学法

  这节课如果作为一般的讲授课教学,其实说来很容易,只需要告诉学生三角形的内角和是180度,学生记住这个结论就可以直接进行练习了。显然这种教学设计不符合新的教学理念 ,《新课程改革》指出:教师要从知识的传授者向学生学习活动的组织者引导者合作者转变,为了将这节课的目标真正的落到实处,我把这节课定性为“开放型探究课”,开展了一系列的数学探究活动,让学生在探究活动中亲身去体验知识的形成过程,从而实现自主发展。所以本节课我主要采用了以下几种教学方法:

  (1)、引导学生在合作中学习数学。例如:分小组测量三角形每个内角的度数并算出它们的总和。

  (2)、引导学生在探究中学习数学。例如:当同学们无法判断大小三角形的內角和谁大谁小时

  ,自己想办法进一步探究.

  (3)、引导学生在探究中完成归纳推理过程。例如:通过拼一拼、折一折、分一分等方法层层推进,这样由普通到特殊再到一般的推理过程.

  (4)、引导学生在归纳推理的基础上实现知识迁移。例如:当学生探究三角形的内角和之后,引导学生利用本节课所学知识进一步探究多边形的内角和。

  八、说教学流程

  学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下4个环节:

  1、创设情景,以情激趣

  首先上课一开始,我利用多媒体出示大小两个三角形为比谁的内角和大而争吵,让正方形来判断谁大谁小的教学情景,富有挑战性,充满了浓浓的吸引力,学生的好奇心好胜心让他们产生一种想立即判断出谁大谁小的强烈愿望,激发了学生的求知欲。为了加深对内角和意义认识和理解我把正方形巧妙的融入了情景中,为后来探究三角形的内角和度数做了铺垫。

  2、 合作交流

  探究新知

  这一环节的设计我是分4部分完成的:

  (1).量一量

  我紧紧抓住小学生强烈的好奇心,先引导他们用量角器量一量的方法去探究比较大小三角形的内角和,可能会出现大于180度、180度或小于180度不同的结果。在交流汇报的结果时会发现答案不统一,无法判断大小三角形内角和谁大谁小的问题。此时学生心中产生了更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”这一思维的碰撞,再次激起学生的学习探究热情,自主产生探究欲望,强烈的求知欲和好胜心让学生跃跃欲试,此时我顺水推舟,引导他们用拼一拼、折一折等不同的方法探究不同的三角形的内角和是多少度。

  (2)、拼一拼、折一折

  学生已经学习了三角形有关知识,已具备一定的探究经验和技能。所以在自主探究和验证三角形的内角和是180

  度时,我充分调动学生学习的积极性,挖掘他们的学习潜力,给他们提供充分自主探究和交流的时间和空间。引导他们利用手中的学具自己去研究,不做任何拼折方法的提示,不局限学生的思维方式,完全放手,选择自己喜欢的方法探究,同学们可能会用不同的方法进行剪拼、折拼,对他们的探究精神我都予以表扬和肯定。

  (3).得出结论、加深内化

  学生亲身经历探索、实验、发现、讨论、交流、验证等一系列的数学活动后,体会到:这些三角形的内角和是相等的。都是180度,并自主得出结论:三角形的内角和是180度。然后引导他们:用科学、简练的数学语言表述探究方法学生汇报并演示三角形内角和180度探究过程。并借助多媒体在大屏幕上演示其中几种基本的剪拼、折拼方法。学生通过动口表述,动手演示,观看验证、加深了他们对三角形内角和是180度的直观理解,更加深了对知识的内化。

  (4).揭示课题、解决问题

  在学生得出三角形的内角和是180度这一瓜熟蒂落,水到渠成的时候,我出示了本节课的课题。继而让学生对大小三角形内角和谁大谁小的问题作出判断:他们说的都不对,这两个三角形的内角和都是

  180度。在这个环节中,我自始至终充当教学研究的组织者,引导者,参与者。前后组织了几次自主探究活动,让学生在保持高度学习热情与欲望的探究过程中,始终以愉悦的心情亲身经历和体验知识的形成过程。培养了学生的探究能力、分析思维能力,激发了他们的创新意识、参与意识,体验成功的同时掌握和体会数学的学习方法,初步感知数学知识的科学性和严密性。在学生在探究中,实现自主体验,获得自主发展。

  3、运用新知、解决问题

  本环节我设计了以下几种题型:1、推算题,2、辨析,3、思考题,4、拓展题,这几种题型由简单到复杂,巩固了这节课学到的知识,也解决了一些实际的问题,最后一道实践活动让学生根据三角形的内角和探索经验去探索多边形的内角和,对知识进行了迁移,加深了知识的内化,更是学生通过自主体验获得知识自我建构的升华。

  4、了解历史 、全课小结

  这一环节我利用数学文化给学生介绍三角形的内角和180度的历史,旨在使学生了解数学知识的博大精深,领悟数学的学习方法,同时也是对本节课三角形的内角和是180度这一知识点作出小结。通过谈感想,增强学生学习数学知识的信心,也是对学生学习所提出的希望:对待学习要有不断探索和创新的精神,只有亲身经历了知识的形成过程,学习效率才会更高!

  三角形内角和说课稿 篇5

  一、说教材

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1.通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.

  2.通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想.

  3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的内角和是180°.

  二、说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°.

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力".四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段.因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式.

  三、说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验.

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角".( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题.

  【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现".

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】引导学生提出合理猜测:三角形的内角和是180°.

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼.

  (3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°.

  (4)画:根据长方形的内角和来验证三角形内角和是180°.

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°.从长方形的内角和联想到直角三角形的内角和是180°.

  【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法.在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系.在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥.

  深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变.)

  结论: 角的两条边长了, 但角的大小不变.因为角的大小与边的长短无关.

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小.这样多次变化, 活动角越来越大, 而另外两个角越来越小.最后, 当活动角的两条边与小棒重合时.

  结论:活动角就是一个平角180°, 另外两个角都是0°.

  【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响.教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明.

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因.

  (五)应用

  1.基础练习:书本练习十四的习题9,求出三角形各个角的度数.

  2.变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3.(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4.智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】习题是沟通知识联系的有效手段.在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力.

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数.

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系.

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识.

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和.教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建.

  说课板书设计:

  三角形内角和

  引入:

  猜测:

  验证:

  量——算

  撕——拼

  折——拼

  三角形内角和说课稿 篇6

  说教材

  《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

  说学情

  一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。

  说教学目标

  根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:

  知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

  情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

  说教学重难点

  根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

  说教法

  为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。

  我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。

  说教学内容

  为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:

  (一)创设情境,导入新课

  为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。

  多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

  (二)自主探究,感受新知

  首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

  接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

  通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。

  最后引导学生总结出三角形的内角和是180°。

  以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。

  (三)巩固练习,强化知识

  我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。

  (四)课堂小结

  我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。

  (五)布置作业

  针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。

  说板书设计

  一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。

  以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)

  三角形内角和说课稿 篇7

  一、说教材

  1、说课内容

  今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。

  2、教材分析

  《三角形的内角和》是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。

  教材的知识它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

  3、教学目标

  根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

  知识与技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  过程与方法:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

  情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

  4、教学重点难点

  根据本节课的教学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

  5、教学具准备

  每个4人小组准备三个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片一个,且要求大小不一)、实验报告单一份;量角器、白板。

  二、说教法学法我要说的第二块是教法学法。

  新课程标准的基本理念就是要让学生"人人学有价值的数学"。强调"教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程"。

  因此,我运用猜想验证,自主探究,动手操作,直观演示的教学法,让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。

  在整个教学设计上力求充分体现"以学生发展为本"教育理念,将教学思路拟定为"故事设疑导入--猜想验证{自主探究}--巩固新知—数学文化—课堂总结",努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。

  三、说教学流程

  根据我对教材的把握和对学情的了解,设计了5个环节展开教学。

  四、创设情境,发现问题

  一天,图形王国举行了一场盛大的宴会,正在大家聊得热火朝天的时候,突然下面传来了一阵吵闹声,图形王国的国王“点”来到争吵的地方一看,原来是三角形家族在争吵,只听一个钝角三角形说:“我有一个内角是最大的,所以我的三角和也是最大的。”,这时候一个锐角三角形说“我长得比你大,所以说我的内角和才是最大的!”,这时,一个直角三角形弱弱的说了一句:“谁长的大,谁的内角和就最大,这不公平!!!”,于是他们就让国王来评理,听到这里国王的也糊涂了:“你们说的都是什么呀?什么是三角形的内角,什么是三角形的内角和呀?”

  五、合作交流,引导探究

  (1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

  (2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

  (3)记录小组测量结果及讨论结果

  实验名称:三角形内角和

  实验目的:探究三角形内角和是多少度。

  实验材料:量角器,锐角三角形纸片,直角三角形纸片,钝角三角形纸片。

  (4)学生汇报量的方法,师请同学评价这种方法。

  师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

  (一)剪拼法

  学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

  师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

  (二)折拼法

  学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

  这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

  (三)演绎推理法

  (借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

  师:你认为这种方法好不好?我们看看是不是这么回事。

  (演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

  师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

  (学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的.发展而言,探究的过程比探究获得的结论更有价值。)

  学生用的方法会非常多,但它们的思维水平是不平行的。

  直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

  拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

  前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

  六、训练提高

  使用课本两道题,以及以下习题

  (1)∠1=35°∠2=47°∠3=()

  (2)∠1=50°∠2=40°∠3=()

  (3)∠1=20°∠2=45°∠3=()

  按着难易程度逐渐提高,巩固新知。

  七、数学文化

  帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  八、课堂总结

  我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

  九、反思

  整节课都在比较愉快的氛围中展开的,但在小组合作中因为要求不够明确,导致在合作中出现了问题,不过好在由于我给孩子们足够的时间,他们能说出:所有三角形都是180度,证明孩子们是学会了的。所以,如果你给孩子足够的时间,他们会给你意想不到的惊喜。

  三角形内角和说课稿 篇8

  一、说教材和新课标

  (包括教材、新课标和教学目标)

  1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于

  180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。

  2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。

  基于新课标的要求,本课的教学目标是:

  1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;

  2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;

  3、培养学生自主学习。

  二、说教法和学法

  在本课题的教法和学法主要体现在以下两方面:

  1、突出学生作为学习主体的作用

  学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。

  2、让学生在创造中学习,在学习中创造

  学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!

  三、说教学过程

  为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。

  接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。

  为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。

  接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。

  四、教学演示

  1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;

  2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;

  3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);

  4、练习:判断题

  ①钝角三角形的内角和大于直角三角形的内角和。

  ②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。

  ③直角三角形中的两个锐角和等于90°

  5、学习求三角形中角的度数的方法……

  三角形内角和说课稿 篇9

  一、 说教材

  三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  二、说学情

  本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。

  因此,我确定本节课的教学目标是:

  教学目标:

  知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。

  过程与方法:

  发展学生动手操作、观察比较和抽象概括的能力。

  情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。

  教学重点:

  学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。

  教学难点:

  三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。

  三、说教法、学法

  整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。

  《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。

  四、说教学过程

  基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  第一, 猜测。

  通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。

  第二,动手操作,探究新知。

  动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。

  这一环节我设计为以下三步:

  1、操作感知。

  组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。

  2、小组合作。

  针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。

  3、交流反馈,得出结论。

  学生完成探究活动之后,在有亲身体验的基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。

  第三是灵活应用,拓展延伸。

  揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。

  1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。

  2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。

  3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。

  这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。

  本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。

  板书:

  三角形的内角和

  猜测验证结论应用

  三角形内角和等于180。

  三角形内角和说课稿 篇10

  一、说教材

  说课内容:人教版义务教育课程标准实验教科书数学第八册第85页例5——三角形的内角和。

  “三角形的内角和”是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,是掌握多边形内角和及解决其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律对学生的后继学习具有重要意义。在此之前,学生已经掌握了三角形的概念、分类,熟悉了锐角、直角、钝角、平角这些角的知识,也可能有部分学生已经知道三角形的内角和是180°,但“知其然而不知其所以然”。所以本课的重点不在于了解,而在于验证和应用,同时发展学生的空间观念和思维能力、解决问题的能力。

  (一)教学目标

  1、知道三角形的内角和等于180°,能运用这一规律进行有关的计算。

  2、通过观察、操作和实验探索等活动,发展学生的空间观念,培养学生的思维能力。

  3、经历三角形的内角和等于180°这一知识的导出过程,学会学习几何知识的方法和科学探究的方法,体验数学学习的成功。

  (二)教学重点

  让学生经历三角形的内角和的导出过程,能运用这一规律进行有关的计算。

  (三)教学难点

  验证三角形的内角和等于180°。

  二、说教法和学法

  “要让学生动手做科学,而不是用耳朵听科学”是新课标的一个重要理念。在本课的设计上我着力通过引导学生经历猜想、实验、验证、归纳、运用、拓展等过程,牢固掌握新知。具体的策略是:

  (一)创设问题情景,激发学生学习兴趣

  通过用一个富有趣味性的动画情境,让学生在愉悦的对话中复习旧知,激发兴趣,调动他们探索的愿望。

  (二)猜想、实验、验证,经历知识的形成过程

  为了使学生自主探究发现三角形的内角和是180°,我安排了两个环节,一是猜测三角形的内角和大约是180°,二是让学生通过算一算、拼一拼、折一折等方法验证这一结论。

  (三)练习层次分明,呈现方式多样,夯实学生双基。

  三.说教学程序设计

  依据以上的分析,我的教学流程大致分为四个步骤。

  (一)创设情境,激发兴趣,复习导入

  “兴趣是最好的老师”,营造一个趣味盎然的课堂学习环境,能有效地吸引学生参与学习过程。课开始,通过课件演示向学生提出问题:你们认识这些三角形吗?(课件闪现角)这是三角形的……?(角)每个三角形有几个角?这一情景巧妙地重现知识,改变了复习的方式,再引出三角形的“内角”及“内角和”的概念,为学生进一步探究三角形的内角和扫除了障碍。接着安排猜角的游戏,让学生拿出课前准备的锐角、直角、钝角三角形,报出其中两个角的度数,老师马上报出第三个角的度数,并做好板书记录。在好奇心的驱动下,学生很快可以进入愤悱状态,教师便可趁此导入新课并板书课题:三角形的内角和

  板书:三角形∠1∠2∠3内角和30°40°110°70°80°30°90°75°15°

  (二)自主探究,操作验证

  让学生做数学就要让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。教学中我重视留给学生充分进行自主探索和交流的时间和空间,让学生经历猜想——验证的过程,在操作、探索中发现,形成结论。

  1、猜想

  首先我会向学生提出:“请你仔细观察这个表格,你发现了什么?”让学生自主发现三角形的内角和是1800这一规律。

  2、验证

  然后鼓励他们:“你发现的这个结论是不是正确的呢?你能不能想办法验证?”恰当的提问放飞了学生的思维。学生经过独立思考与合作交流,预计能反馈出计算、拼、折等几种验证的方法。教师在集中反馈时必须向学生明确以下几点:

  (1)用计算的方法,可能会因为测量有误差而导致计算的结果有误差。完成板书。

  三角形∠1∠2∠3内角和30°40°110°180°70°80°30°180°90°75°15°180°

  (2)用拼一拼的方法:要注意为每个内角注上编号再拼,防止搞错,同时借助课件加以说明。

  (3)用折一折的方法:要注意第一步折的折痕要和底边平行,而且是三角形的中位线。并用课件演示。

  3、总结概括结论并板书:三角形的内角和是180°,然后指导学生看书质疑,并追问:“如果知道三角形的其中两个角的度数,怎样求第三个角度数?”以强化结论的运用。

  (三)巩固运用,夯实双基

  为了使学生更好地巩固和应用这一结论,我设计了以下的题组:(课件展示)

  1、猜一猜

  猜一猜小动物背后藏着的角的度数吗?

  你知道这个游戏的秘密吗?

  这一题是用图示的方法,直接口算出三角形的第3个角的度数。

  2、书本第85页的做一做

  在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  第二题是用文字的呈现方式,让学生计算出三角形的第三个角的度数。这道题我板书在黑板上,目的是突出解题的规范。

  3、判断、改错

  说明利用三角形内角和可以检测三角形的角的量度结果。

  4、书本第88页的第9题

  这一题是解决特殊三角形的角的计算问题。

  5、书本第88页的第10题

  第5题是运用“三角形的内角和是180°”这一结论解决生活中的实际问题。

  这一题组注意结合学生的认知规律,具有较强的针对性和层次性,注意到呈现方式的多样性,让学生从“会”过渡到“熟”,从“熟”过渡到“活”。

  (四)总结反馈,拓展延伸

  课末,我会让学生结合板书,回顾本节课所学的知识,引导学生对从练习中反馈出来的一些易错、易混的知识加以辨析、强调,进一步加深学生对新学知识与技能的理解与掌握。

  最后再出示两道拓展性练习题:

  1、拓展延伸

  帮角找朋友:每组卡片中,哪三个角可以组成三角形?

  2、思考题:

  根据三角形的内角和是180°,你能求出下面图形的内角和吗?

  引导学生通过解决这些拓展性的练习,渗透数学的化归思想,再一次强化对学习数学的方法的认识。

  通过设计多层次的练习,放缓了新知的坡度,既有基本练习,巩固练习,也有发展性练习,努力体现不同层次的学生达到不同的教学目标。同时注意改变练习的呈现方式,使学生在轻松愉悦的气氛中学会新知,形成技能。

  板书设计:三角形的内角和

  三角形内角和说课稿 篇11

  今天我说课的内容是北师大版小学数学四年级下第二单元“认识图形”中探索与发现部分的“三角形的内角和”这部分知识。本课指导学生通过直观操作的方法,探索并发现三角形内角和等于180°。让学生在实验活动中,体验探索的过程和方法。能使学生应用三角形内角和的性质解决一些简单问题。在认真学习《数学课程标准》,深入钻研教材,充分了解学生的基础上,我准备从以下几方面进行说课。

  一、说教材

  “认识图形”是“空间与图形”的重要内容之一。学生在此之前已经对三角形有了一定的认识。因为教材的小标题为“探索与发现”,所以我主要是通过让学生在自主探索中学习本课内容。先让学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

  结合学生已经有的知识经验,对于本课我确立了以下几个教学目标:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。已知三角形两个角的度数,会求第三个角的度数。

  2、渗透猜想--验证--结论--运用--引申的学习方法,培养学生动手操作和合作交流的能力,培养学生的探究意识。

  3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣,体验学习数学的快乐。

  把教学重难点设定为验证三角形的内角和是180°,并学会应用。

  二、说教法学法

  本堂课我采取了“开放型的探究式”教学模式,运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,使学生全面参与、全员参与、全程参与,真正确立其主体地位。让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。在在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

  三、说教学过程

  本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。因此我依据学生的认知规律将教学过程分为以下几个环节:

  (一)复习旧知

  由于学生在此之前已经学过了一些关于三角形的一些知识,为了让学生在学习上有一定的连贯性,我首先设计了一个问题“你对三角形有哪些了解?”,让学生在复习当中加深对三角形的认识,自然引出“内角”一词,为后面的探索奠定基础。

  (二)创设情境,激趣导入

  教育家叶圣陶先生也曾经说过:“兴趣是最好的老师。”因此,本节课一开始,我采用故事导入,用两个大小不同的三角形,创设一个拟人化的对话情境,“大”对“小”说:“你看我个大所以我的内角和一定比你大。”“小”问到:“那可不一定,我虽然个小可我的内角和不一定比你小啊!”两人争论不休,请同学们帮忙解决问题,引入今天所要学习的内容。在这一环节中把问题隐藏在情景之中,将会引起学生迫不及待探索研究的兴趣,引发学生的思考,要比较内角和的大小,就要知道各自的内角的度数,从而引导学生开始对“三角形的内角和是多少”进行思索,引发学生探知欲望,也为下一步的教学架桥铺路。

  (三)动手操作,自主探究

  由于学生对三角形的内角和已经产生了一定的求知欲,在此我首先设计了一个问题“什么是三角形的内角和?怎样才能求出三角形的内角和?”从而引起学生的继续思考。在此问题提出的基础上,我又分别设计了两个活动。

  活动一:让每组同学分别画出大小,形状不同的若干个三角形,并分别量出三个内角的度数,并求出它们的和。填入记录表中。活动二:让学生分组汇报己的记录表,阐述发现了什么。

  由于本节课是一节发现探索的课程,所以我在此环节进行了这样的设计。通过这样的活动,引导学生从“实际操作”到“具体感知”,再从“具体感知”到“抽象概念”,让学生初步理解三角形的内角和是180度。在量一量、算一算中产生猜想,在探索中发现,在活动中思考,经历三角形内角和的研究方法,体会活动结果,进一步激发学生的学习兴趣,同时也培养了学生与他人合作交流的意识。

  (四)验证结论

  学生完成探究活动之后,已经知道了三角形内角和。我做了这样的提问“除了测量计算出三角形内角和,你还有什么方法可以验证三角形内角和是180??”学生可以通过:量一量、拼一拼、折一折的方法,发现三角形的内角和是180度。体会验证三角形内角和的数学思想方法,加深学生对这部分知识的记忆。

  (五)巩固练习

  在巩固练习中,我遵循由易到难的规律,设计了分层训练。第一层:基本训练,通过练习明确,会求简单的三角形内角和。第二层:综合训练,通过学生观察、分析,从纷繁复杂的条件中获取有价值的信息解决问题。最后一道实践活动让学生根据三角形的内角和探索经验去探索四边形的内角和,对知识进行迁移,使学生得到了发展。

  (六)总结评价

  回顾这节课,评价一下自己:你学到了什么知识?学习的快乐吗?你觉得小组里谁在哪方面比较出色或者你有什么建议想对他说的?

  三角形内角和说课稿 篇12

  一、说教材

  “三角形的内角和”是人教版小学数学四年级下册第五单元第3节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

  二、说学情

  一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。

  本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

  从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  三、说教学目标

  根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。

  【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  【过程与方法】经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

  【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

  五、说教法学法

  新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。

  六、教学过程

  (一)导入新课

  首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

  根据视频中三角形的对话,顺势引出题目——三角形的内角和。

  设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

  (二)新课探究

  接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

  接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

  通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。

  此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。

  (三)巩固提高

  接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

  练习题组设计如下:

  第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?

  设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

  (四)小结作业

  在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?

  这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识

  在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?

  这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。

  七、板书设计

  为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。