我要投稿 投诉建议

《点到直线距离》说课稿

时间:2020-11-05 09:31:37 说课稿 我要投稿

《点到直线距离》说课稿范文

  作为一位无私奉献的人民教师,编写说课稿是必不可少的,编写说课稿是提高业务素质的有效途径。我们应该怎么写说课稿呢?下面是小编为大家收集的《点到直线距离》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。

《点到直线距离》说课稿范文

  1、教材分析

  1.1教学内容及包含的知识点

  (1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容

  (2)包含知识点:点到直线的距离公式和两平行线的距离公式

  1.2教材所处地位、作用和前后联系

  本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

  可见,本课有承前启后的作用。

  1.3教学大纲要求

  掌握点到直线的距离公式

  1.4高考大纲要求及在高考中的显示形式

  掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

  1.5教学目标及确定依据

  教学目标

  (1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

  (2)培养学生探究性思维方法和由特殊到一般的研究能力。

  (3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

  (4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

  确定依据:

  中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(xxxx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(xxxx年)

  1.6教学重点、难点、关键

  (1)重点:点到直线的距离公式

  确定依据:由本节在教材中的地位确定

  (2)难点:点到直线的距离公式的推导

  确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

  分析“尝试性题组”解题思路可突破难点

  (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

  2、教法

  2.1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

  确定依据:

  (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

  (2)事物之间相互联系,相互转化的辩证法思想。

  2.2教具:多媒体和黑板等传统教具

  3、学法

  3.1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

  一句话:还课堂以生命力,还学生以活力。

  3.2学情:

  (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

  (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

  (3)生活经验:数学源于生活,生活中的'点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

  3.3学具:直尺、三角板

  3、教学程序

  教学环节教学过程设计意图

  创设情景(三分钟)唤醒旧知师:“距离产生美”。昨天我与xx同学相隔遥远,彼此毫无感觉,今天的零距离荡漾着亲切,却少了想象的空间,看来把握恰当的距离才能感知美好。

  (1)你有什么办法能得到我(A点)和xx同学(B点)之间的距离?

  生:思考,回答。

  (2)“形缺数时难入微”。

  (1)中的各种办法中哪个较好?还有没有更好的办法。

  生:比较,回答。

  教学机智:针对学生的回答,老师进行引导。老师进行铺垫、递进,或深入、拓展。

  师:由此看来,两点间距离公式成为解决该问题的首选。让我们一鼓作气,继续努力。提问一:还原学生的数学现实,诱发动机,乐于参与。

  提问二:既可点燃数形结合的思想,又可唤醒两点间距离公式。

  根据认识发展理论,学生认知结构的发展是在其认识的过程中伴随同化和顺应的认知结构不断再建构的过程,达到以旧悟新的目的。(1)(2)两问的解决为后继知识作好了铺垫。

  4、教学评价

  学生完成反思性学习报告,书写要求:

  (1)整理知识结构

  (2)总结所学到的基本知识,技能和数学思想方法

  (3)总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因

  (4)谈谈你对老师教法的建议和要求。

  作用:

  (1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

  (2)报告的写作本身就是一种创造性活动。

  (3)及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

  5、板书设计

  (略)

  6、教学的反思总结

  心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

【《点到直线距离》说课稿范文】相关文章:

说课稿模板说课稿范文11-08

距离高二作文08-09

高二距离作文05-07

距离现代诗01-31

距离作文800字01-07

爱的距离散文02-01

《距离》现代诗歌10-13

广告说课稿范文09-30

《坐井观天》说课稿范文09-23

《北京》说课稿范文11-25