我要投稿 投诉建议

《大数据时代》读后感

时间:2023-06-28 12:26:38 秀雯 读后感 我要投稿
  • 相关推荐

关于《大数据时代》读后感范文(精选16篇)

  读完某一作品后,相信你心中会有不少感想,是时候抽出时间写写读后感了。想必许多人都在为如何写好读后感而烦恼吧,下面是小编精心整理的关于《大数据时代》读后感范文,仅供参考,希望能够帮助到大家。

关于《大数据时代》读后感范文(精选16篇)

  《大数据时代》读后感 1

  对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。

  首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的.革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

  作者认为大数据时代具有三个显著特点。

  一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。

  二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。

  三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

  作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。

  一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。

  二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。

  三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

  面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

  《大数据时代》读后感 2

  去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

  不过话又还得说回来,《大数据时代》是本好书。

  当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧———巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

  看完此书,我心中的一些问题:

  1、什么是大数据?

  查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的`是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。

  以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

  2、大数据适合什么样的企业?

  诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

  同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?

  3、大数据带来的影响

  当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?

  1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

  2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司

  3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,我还是持保留意见的。

  《大数据时代》读后感 3

  如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

  舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

  在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

  一、更多:不是随机样本,而是全体数据。

  二、更杂:不是精确性,而是混杂性。

  三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

  一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?

  我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

  我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

  世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的.,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

  大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

  在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

  此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

  《大数据时代》读后感 4

  读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

  这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。

  其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

  大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的.疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

  在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

  在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

  大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

  大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

  大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

  《大数据时代》读后感 5

  首先,想谈一谈何为大数据,何为大数据时代。大数据是一种资源,也是一种工具。它提供一种新的思维方式去理解当今这个信息化世界。为何说是一种新的思维方式:在信息缺乏的时代或模拟时代,我们更倾向于精确性的思维方式,就像是"钉是钉,铆是铆",而在这种传统的思维方式下,我们得到问题的答案只有一个。

  而在大数据时代下,我们打破了这种思维方式,换句话说,我们接受结果的不确定性。简言概括之,我认为大数据是一种预测模型。在大数据时代下,我们关注的不是因果,即为什么是这样,而更关心"是什么"这种相关关系。换句话说,在这种新思维的思考方式下,我们探究问题背后的原因也是不可行的。我们所做的是利用大数据这种工具,让数据自己说话!

  其次,我想谈下如何利用大数据提升我军战斗力。当然,大数据分析并不是精准的预测,精准的预测也是不存在的。大数据只能有利于我们理解现在和预测未来的可能性。

  作为军人,我所关注的是如何利用好大数据的工具提升我军战斗力,打赢这场信息化战争。毫无疑问,现在我们打的不是刀对刀,枪对枪的战争,更不是模拟时代,当代乃是数字时代,打的是信息化战争!

  四次战争的大胜,美军的战争形态从机械化转向信息化,而且相应的在战场取胜的时间也越来越短,这正是大数据时代下的必然结果。而我军正在转向信息化的过程中。在此战争形态的过程中,我们需要更多的计算分析师,大数据分析师,数学家等高等技术性人才来打赢这场信息化战争。这正是大数据时代下我们不得不有的基础。我军战斗力的提升迫在眉睫!

  当然大数据是一把双刃剑,利用好了取胜也是得心应手,相反,利用不好会导致不可估量的.损失。

  毕竟,这只是一种预测模型,得不到精准的预测结果。我们更要让数据为我们所用,不要被庞大的数据库框住我们的思维。为适应时代的发展,在这个适者生存,弱肉强食的世界,大数据时代下的残酷竞争已经给我们敲响警钟,一场悄无声息的信息化战争已经打响!

  《大数据时代》读后感 6

  《大数据时代》确实是一本当下应该看的书,书中用大量的例子阐明了几个关键的观点:

  1.我们应该且可以关注数据的全部而不是局部的抽样

  2.由于数据量极大,我们可以容忍更大程度的不精确

  3.我们由关注事物的因果变为关注事物的相关性

  同时作者对大数据时代中价值链三个环节即数据,技术和思维(可以理解为商业模式)之间的关系进行了剖析,得出了大公司小公司都可能如鱼得水,而中等体量的公司,可能会遭遇灭顶之灾。对这个预言,我拭目以待,至少目前,我从事和了解的信息服务行业(包括企业级市场研究,消费类市场研究,咨询)体现出了大公司获取数据的力量,中等规模公司在被不断甩开距离,而新兴的小公司还没有特别的崭露头角。

  作者对大数据时代对商业和管理带来的变革也进行了解读,但是没有给我留下太多的印象。

  最后作者也强调了大数据可能带来的风险,包括数据的滥用,数据的独裁,侵犯个人隐私等。在这个部分我发现了作者的一个瑕疵。作者所举的例子包括越战的伤亡数字,采集灾后地图和农业信息等,说明数字被人为的放大或修改,造成依据数据所作出的决策出现偏差。这里不知作者有有意还是无意,忽视了信息的来源。绝大多数商业/政治的决策者,如果面对真实,准确和及时的信息都可以做出正确的'决策,而获得真实,准确和及时的信息不仅成本高昂,甚至无法做到。获得高质量的信息源也是长期困扰信息服务行业的瓶颈问题。而在大数据时代,个人认为只有不是为了收集而收集到的数据才具备了“高质量”数据的特点,例如,个人的信用卡刷卡行为,上网搜索的行为等,这些是人自然行为产生的数据与那些填写调查问卷,向上级汇报所产生的数据是截然不同的。前者是自然形成的数据,而后者是为了收集而收集的数据。作者在风险部分举得例子都是后者。如果是依据自然形成的数据,那么数据独裁和滥用(应该换为褒义词了)几乎不会造成非常错误的结果,我们恰恰期待一些和我们常识有冲突的结果,来纠正我们的经验主义错误。但侵犯个人隐私则是不可避免的风险。

  《大数据时代》读后感 7

  这两年,大数据这个词突然变得很火,不仅出现在互联网公司的战略规划中,同时在中国国务院和其他国家的政府报告中也多次提及,无疑成为当今互联网世界中的新宠儿。笔者对大数据一直好奇已久,阅读了很多资料仍不得其解,直到读完《大数据时代》才有了粗略的认识。

  《大数据时代》从思维、商业、管理三个方面阐述了在大数据时代下的变革。这些变革涉及人们生活的方方面面,其影响程度可以与两次工业革命相媲美。作者在第一部分提出了三个比较令人震惊的观点:第一,不是随机样本,而是所有数据,这里要求数据有很多。第二,不是精确性,而是混杂性,这里要求数据更杂。第三,不是因果关系,而是相关关系,这里要求数据要更好。第二部分作者从万事万物数据化和数据交叉复用的巨大价值两个方面,讲述驱动大数据战车在材质和智力方面向前滚动的最根本动力。第三部分则是阐述了大数据时代下的弊端以及在管理上的措施。个人认为这本书的精髓部分是第一部分。第一部分的三个观点涉及面很广,包括统计学、逻辑学、哲学等。后两个部分都是以第一部分这三个观点为基础展开阐述的。

  笔者侧重于从第一部分中的这三个观点谈谈自己的看法。这三个观点其实就是哲学上讲的世界观,因为世界观决定方法论,所以这三个观点对传统看法的'颠覆,就会导致各种变革的发生。

  首先,作者认为在抽样研究时期,由于研究条件的欠缺,只能以少量的数据获取最大的信息,而在大数据时代,人们可以获得海量的数据,抽样自然就失去它的意义了。

  其次,要效率不要绝对的精确。作者说,执迷于精确性是信息缺乏时代和模拟时代的产物,只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用。作者是基于数据不可能百分之百正确的考虑而做出这样的判断的,如果采用小数据,一个数据的错误就会导致结果的误差很大,但是如果数据足够多、数据足够杂那得出的结果就越靠近正确答案。大数据时代要求人们重新审视精确性的优劣,书中还说到大数据不仅让人们不再期待精确性,也让人们无法实现精确性。

  最后,不是因果性,而是相关性,这是这本书中争议最大的一个观点,不仅是读者,就算是本书的译者也在序言中明确地说到他不认同“相关关系比因果关系更重要”的观点。作者觉得相关关系对于预测一些事情已经足够了,不用花大力气去研究天们的因果关系。作者用林登的亚马逊推荐系统的成功,证实了大数据在分析相关性方面的优势以及在销售中获得的成功。沃尔玛也是充分地利用并挖掘各类数据信息的代表,从啤酒和尿布的案例,以及作者举的有关蛋挞和飓风天气的案例,都说明了掌握了相关关系对于策略的帮助作用。

  作者在书中把大数据说得很厉害,在最后一部分分析大数据带来无数好处的同时,也带来了不良影响以及如何面对这些影响。用麦克纳马拉的例子来说明对数据过度依赖所带来的后果。也用《少数派的报告》这部电影来说明如果痴迷于数据会导致人们将生活在一个没有独立选择和自由意志的社会,如果一切变为现实,人们将被禁锢在大数据的可能性之中。书中提出了两种解决方法,一种是使用数据时征询数据所有个人的知晓和授权,另一种是技术途径匿名化。毫无疑问,大数据将会给社会管理带来巨大的变革。

  大数据给人类社会的方方面面带来了巨大的变革,这是社会发展的潮流,不可逆转,人们只有顺应这种潮流,在思想上和技能上做好准备,才能成为时代的弄潮儿。对于一家公司或一个国家,要从根本上改变思维和观念,尽早适应这种潮流。

  《大数据时代》读后感 8

  3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流。

  老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。

  张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的.方式进行实践,不可生搬硬套。

  董译雯老师说:在你我感叹《大数据》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!

  张红杰老师说:很感谢校长给我们推荐了《大数据》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。

  白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。

  交流活动尾声,身为阅读《大数据》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!

  此次活动从寒假期间倡导读《大数据》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!

  《大数据时代》读后感 9

  近两周用业余时间读了《大数据时代》这本书,是听培训时杜威老师推荐的,我快速阅读了一遍,觉得受到了一些启发,发现了一些原来没有想到看到的事情。

  首先是大数据代表着数据的样本=全体,这是一个与传统统计学的显著区别。大数据有能力获得全体数据并对其进行分析。

  第二就是相关性与因果性同样重要。相关性说明了什么事情与什么什么事情有关系,如商场周围车流量的增多与商场销售额的相关性,因果性说明什么是什么的'原因,如睡10个小时是有精神的原因。在大数据中,相关性要比因果性容易获得,而且相关性已经能为客户带来较大的收益。

  第三就是大数据允许存在不精确性、混杂性,由于数据量巨大,存在少量的异变不会对结果产生任何影响,如收益是1个亿与1亿零1元的差别可能决策者不关心。

  第四是大数据中的三个主要因素,思维、数据、技术,思维觉得你在哪些地方使用大数据。在这三个因素之中,会产生数据中间商,来处理加工数据并出售。

  《大数据时代》读后感 10

  “大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。

  作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。

  书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。

  为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的`达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。

  在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。

  于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。

  面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。

  《大数据时代》读后感 11

  《大数据时代》,作者是被誉为“大数据时代的预言家”维克托·迈尔·舍恩伯教授和肯尼思·库克耶。此书是在大数据方兴未艾、众说纷纭的时刻,进一步阐述和厘清大数据的基本概念和特点。

  人类历史长河中,即使是在现代社会日新月异的发展中,人们还主要依赖抽样数据、局部数据和片面数据,甚至在无法获得实证数据的时候纯粹依赖经验、理论、假设和价值观去发现未知领域的规律。因此,人们对世界的认识往往是表面的、肤浅的、简单的、扭曲的或者是无知的。维克托指出,大数据时代的来临使人类第一次有机会和条件,在非常多的领域和非常深入的层次获得和使用全面数据、完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识,得到过去无法企及的商机。

  本书从思维变革、商业变革及管理变革三部分阐述大数据时代已经来临;列举了众多在公共卫生、商业服务领域大数据变革的例子。比如:在思维变革部分,以UPS与汽车修理预测为例,证明知道“是什么”就够了,没必要知道“为什么”;在大数据时代,我们不必非得知道现象背后的原因,而是要让大数据自己“发声”:UPS国际快递公司从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时的进行防御性的修理。之前UPS每两三年就会对车辆的`零件进行定时更换,但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过检测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元,这就是通过找出新种类数据之间的相互联系来解决日常需要。这种方式完成可以应用于我们石油石化行业,我们的大量生产装置及设备,在建立日常的关键部位检测机制基础上,形成大量的数据信息,通过对这些数据的科学分析,判断出需要检修或更换的零件,从而有效降低运营成本。

  当我们一旦“不再追求精确度,不再追求因果关系,而是承认混杂性,探索相关关系”,“思维转变过来,数据就能巧妙的用来激发新产品和新型服务”。数据正成为巨大的经济资产,成为新世纪的矿产与石油,将带来全新的创业方向、商业模式和投资机会。

  近年来,伴随着经济社会快速发展、深度调整,石油石化产业变革加剧,面临的四大革命中其中一项就是“数字革命”。因此我们必须牢牢把握数字革命发展大势,加强数据治理和大数据分析应用,提高企业生产运行与管理水平,拥抱大数据时代的来临。

  《大数据时代》读后感 12

  舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

  在百度上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

  而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

  本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

  一、更多:不是随机样本,而是全体数据。

  二、更杂:不是精确性,而是混杂性。

  三、更好:不是因果关系,而是相关关系。

  对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

  而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的.出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

  观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

  但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

  在这样的大环境下,常引起我更多的思考和担忧。

  大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

  工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

  大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

  《大数据时代》读后感 13

  《大数据时代》是英国维克托·迈尔-舍恩伯格教授的著作,这本书也被尊为国外大数据研究的先河之作。这本书最大的优点就在于作者利用上百个例子来对大数据的方方面面做了详细解说,让外行也很容易理解。结构上,作者通过大数据时代的思维变革、商业变革和管理变革三个角度依次阐述,条理清晰。

  所谓"大数据",按作者的说法,就是"所有数据"。随着计算机运算速度和存储能力的发展,收集数据变得越来越简单,储存数据的成本越来越低。在过去,由于技术限制,人们做统计时只能收集有限的数据做样本,其中要考虑随机样本的选择,努力减小因样本问题出现的误差;统计结果往往不能重复使用,造成数据利用率低。而现在则可以做到"样本=总体"。数据的增多带来不可避免的'精确性问题。 "小数据"时代,一个样本的错误就可以造成对总体估计的失败,幸运的是,"大数据"时代对精确性不再那么要求苛刻——也无法要求太严格——数据的数量足以弥补这一缺陷。在对思维变革这一部分的阐述中,最重要也是全书的核心观点就是大数据时代,我们应该从追求"因果关系"的旧思维方式向追求"相关关系"转变。 在我看来,这实际上是通过大数据来透视一种事物的发展趋势,而很多精确学科领域依然需要探寻"因果关系"解决更有针对性的问题,所以,这局限了这一转变只能在特定的领域发生。作者自己也说,"大数据的相关性将人们指向了比探讨因果关系更有前景的领域。"

  大数据时代的数据获取方式是多种多样,数据形式也是千变万化,任何文字、行为、万物都可以被数据化后用来分析。对这些数据的利用,不仅要考虑到其初次使用价值,更要放眼它未来可能的用途以提高数据的利用率。当然数据并不是无限使用,时效、环境的变化肯定会对数据提出新的要求,所以数据的折旧也是应当考虑的。这又引出了对数据这一无形资产的估值可能性。对于Facebook, Twitter这样的公司来说,数据就是他们的核心,如何在资产负债表上给他们一个公正的体现正是我们需要考虑的。

  大数据时代的价值链由三部分构成,我把它们简化为"生产—分析—使用"三个环节,这对应书中的三种类型公司: 第一种是基于数据本身的公司,第二种是基于技能,第三种则是基于思维。在大数据早期,技能和思维最有价值,但作者认为,最终,大部分的价值还是必须从数据本身来挖掘。这是假定了一个成熟的市场,人人都了解了大数据的用途。

  对于普通人来说,大数据时代最关心的还是隐私问题。不知不觉中,个人的一举一动都暴露在政府甚至私人企业之下,还面临潜在的泄露风险。对此,作者提出了使用者承担责任的解决办法,而不是过去那种流于形式的使用授权。大数据甚至能预测一个人的犯罪动机,这给监管者带来的难题是,预测一个人要犯罪,惩罚还是不惩罚?在这点上,社会达成"个人仅需对行为而非动机负责"的共识非常重要。

  大数据时代的风险控制靠的是"算法师",类似会计师一样的职业,对大数据的准确度或有效性进行鉴定。这能在一定程度上防止数据滥用的发生和数据独裁。当今的法律亦需对大数据监管进行修订补充。

  当代大数据发展主要由科技公司推动,相信在不久的将来更多的传统领域会意识到大数据的重要性。但我们也应该保持清醒,大数据并不是万能药,对某些领域或环节,使用大数据是一种简单且实用的选择;但对某些领域,盲目使用大数据只会适得其反。

  《大数据时代》读后感 14

  我主要读了第一部分和第三部分。

  第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。

  对于一,我们必须承认我们以往做的处理抽样数据得到结果的方法,是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。

  对于二,作者强调通过掌握更多的数据,暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的',也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。

  对于三,作者指出知道"是什么"就够了,没必要知道"为什么",乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。

  第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在平时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。

  《大数据时代》读后感 15

  知道"是什么"就够了,没必要知道"为什么"。在大数据时代,我们不必非得知道现象背后的原因,而是让数据自己"发声"。这个命题是我读这本书最大的感触。

  对于大多数人来说,这的确是一场思维变革。对于理科学生来说,会认为这是一个错误的观点,因为这无异于否定了他们对世界客观物理化学规律探索的重要性;对于一名工科学生,其实这并不是一个多么新颖的观点,因为工科是讲求时用性的,如何能更好地利用基本自然科学规律创造社会财富比探索自然科学知识显得更重要。

  这些天来,在读大数据这本书的同时,也稍微重温了一下自动控制原理,认识到控制系统中存在明显的大数据时代思维方式,借读书交流会之际,与大家分享。

  对系统的有效控制需要对系统理解与建模。以一个日常生活中的`例子说明。开车的时候一脚油门下去车就飞出去了,但并不知道这一脚油门下去能给多大车速,这就需要驾驶人员的熟练的驾驶技能了,不然超速被开罚单是很正常的。那么,问题就来了:如何能实现速度的自动控制而不用驾驶人员踩油门?这就是控制系统最关键的环节——建立系统数学模型。大白话就是知道车速与燃油量的数学关系式。若是以探索为什么的思维模式,不可避免的要列一大堆能量方程、动量方程等物理化学式子,经过繁杂的计算,还是能得到车速和燃油量的数学关系式的。很明显这是一个繁琐的过程,因为得知道现象背后的原因。这仅是对于这种简单的系统,若是对于航空发动机这种复杂的系统,结构工艺过于复杂,分析各部分的物理化学过程是十分困难的,这时候可以通过实验法得到数学模型。

  实验法主要有时域测定法、频域测定法和统计相关法。与大数据时代思维最接近的是统计相关法,主要过程是对被研究对象施加某种随机信号,根据被测对象各参数的变化,采用统计相关法确定被测系统或对象的动态特性。这种方法可以在被测系统或生产过程正常运行状态下进行在线辨识,测试结果精度较高,但要求采集大量测试数据,并需要相关仪和计算机进行数据计算和处理。

  若用开车实例来解释,此时的系统为汽车动力系统,施加的随机信号为燃油量,被测对象指车转速,得到的动态特性就是指车速与燃油量函数关系式,从而不用探求背后的物理化学规律就得到了数学模型。

  在沈阳黎明航空公司实习时去过试车间,除了发动机点火后震撼的场景动人心魄,控制室屏幕上海量的数据也同样引人注目,我想这么多数据无非就是验证数学模型或直接实验法得到数学模型,结合航空发动机这种复杂的系统,对于搞控制的人来说,得到数学模型就够了,现象背后的原因交给研发的人来探索更好。

  《大数据时代》读后感 16

  世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

  《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了"大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

  "我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

  这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年流感流行之时,通过检测检索词条,处理34.5亿个不同的数据模型,通过预测并与2007、2008年的'美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具。

  同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

  对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

【《大数据时代》读后感】相关文章:

数据分析总结09-05

我们的时代——共享时代作文(精选27篇)12-14

议电子数据安全审计08-26

小时代台词03-21

“共享”时代?作文04-15

时代2035作文10-24

这个时代作文03-03

我的时代作文05-26

新时代作文05-02

慢速时代作文06-11