登录 注册

九年级二次函数课件

时间:2017-10-05 编辑:智威 手机版

  二次函数(quadratic function)的基本表示形式为y=ax+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

  《二次函数应用》导学案

  学习目标

  1. 掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识解决实际问题

  2. 将实际问题转化为数学问题,并运用二次函数的知识解决实际问题。

  学习重点和难点

  运用二次函数的知识解决实际问题

  课前准备:

  学习过程:

  一、自主尝试

  1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2,水面宽4.如图建立平面直角坐标系,则抛物线的关系式是(  )

  A. B. C. D.

  2.九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高 ,当球出手后水平距离为4时到达最大高度4,设篮球运行的线路为抛物线,建立如图的平面直角坐标系,设篮球出手后离地的水平距离为x,高度为,求关于x的函数解析式。

九年级二次函数课件

  二、互动探究

  例1 如图,某喷灌设备的喷头B高出地面1.2,如果喷出的抛物线形水流的水平距离x()与高度()之间的关系为二次函数=a(x-4)2+2.

  求:(1)二次函数的解析式

  (2)水流落地点D与喷头底部A的距离(精确到0.1)

  例2:某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高,与篮圈中心的水平距离为7,当球出手后水平距离为4时到达最大高度4,设篮球运行的轨迹为抛物线,篮圈距地面3.

  (1)建立如图的平面直角坐标系,问此球能否准确投中?

  (2)此时,若对方队员乙在甲前面1处跳起盖帽拦截,已知乙的最大摸高为3.1,那么他能否获得成功?

  练习:

  1. 小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度为2米,如果出手后铅球在空中飞行的水平距离与高度之间的关系式为,那么小明掷铅球的出手点与铅球落地点之间的水平距离大约是多少?

  2.如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

  (1)直接写出点M及抛物线顶点P的坐标; (2)求这条抛物线的解析式;

  (3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?

  三、反馈检测:评价手册

  四、课外作业:同步练习

[九年级二次函数课件]相关文章:

1.九年级化学金属课件

2.九年级思品总复习课件

3.九年级新学期课件

4.九年级物理内能课件

5.九年级作文结构课件

6.九年级英语课件

7.

8.九年级心理课课件

9.九年级英语复习课件

10.九年级下册数学课件下载