教学目标:
(1) 了解集合、元素的概念,体会集合中元素的三个特征; (2) 理解元素与集合的“属于”和“不属于”关系; (3) 掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合
(set),也简称集。
3. 思考1:判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数; (2) 我国的小河流; (3) 非负奇数;
(4) 方程x210的解;
(5) 某校2007级新生; (6) 血压很高的人; (7) 著名的数学家;
(8) 平面直角坐标系内所有第三象限的点 (9) 全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,
或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),
因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。 (4)集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA 例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A 4A,等等。
6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C表示,集合的元素用
小写的拉丁字母a,b,c,表示。 7.常用的数集及记法:
非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R;
(二)例题讲解:
例1.用“∈”或“”符号填空: (1); (2); (3)Z;
(5)设A为所有亚洲国家组成的集合,则中国A,美国,印度A,
英国 A。 例2.已知集合P的元素为1,m,m23m3, 若3∈P且-1P,求实数m的值。
(三)课堂练习:
课本P5练习1;
归纳小结:
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。
作业布置:
1.习题1.1,第1- 2题; 2.预习集合的表示方法。 课后
[沪教版高一数学课件]相关文章:
3.关于高一数学课件
10.高一上册英语课件